

PROPERTIES OF WOOD-BASED COMPOSITES

Dr. Stephen Shaler Director, School of Forest Resources March 13, 2017

NER.COFE 2017

OBJECTIVES

 Overview of wood-based composites produced with focus on facilities in Maine and the region

- Develop understanding of resources needs for different wood-based composites
- A look ahead at new wood-based composites

WHAT IS A COMPOSITE?

- A composite material is comprised of two or more distinct materials joined together which exhibit properties superior to either of the materials used alone.
- Increased range of sizes and forms relative to base materials.

CLASSIFICATION OF COMPOSITE MATERIALS

COMPOSITE MATERIALS

HOW ARE COMPOSITES MADE?

- No bark is good bark
- Make smaller sized "particles" from a tree (veneer, particles, lumber, fibers, ...)
- Remove moisture
- Add adhesive, other chemicals
- Press composite (typically) with heat and pressure to densify final product

HOW ARE COMPOSITES MADE?

 Adhesives are typically thermoset.

 Polymers in WPC are typically thermoplastic.

COMPOSITES CAN USE

- High quality logs
- Low quality logs
- Pulpwood
- Softwoods
- Hardwoods
- Mill residue

No bark is good bark

Veneer		Lumber		
1/8", 3/16", 1/4"		2" x		
Particle Leng)	Slendernes Ratio	S
Wood Fiber	1-3 mm		~ 100	
Wood Flour -40/+60		0	4-6	
Strands 4 - 13 i		nch 50 -> 300		

STRUCTURAL WOOD-BASED COMPOSITES

- Glulam
- I-Joist
- OSB
- Plywood
- Rimboard
- Structural Composite Lumber (SCL)
- Cross-Laminated Timber (CLT)

INTERIOR WOOD-BASED COMPOSITES

- Particleboard
- Medium Density Fiberboard (MDF)
- Hardboard
- Engineered Wood Siding and Trim
- Decorative Surfaces

WOOD BASED COMPOSITES MANUFACTURERS

- JM Huber OSB @ Easton, ME
- LP Building Products OSB & LSL @ Limerick, ME
- DuraLife WPC @ Biddeford, ME
- Columbia Forest Products Veneer @ Presque Isle, ME
- Moosewood Millworks Laminated Flooring @ Ashland, ME
- Arauco Particleboard @ St. Stephen, NB
- Foard Panels SIP West Chesterfield, NH

54 Plywood

Not shown: Curitibanos, Brazil

44 OSB

Not shown: Ponta Grossa-Parana, Brazil Lautaro, Chile Panguipulli, Chile

Midrise Wood Frame Construction in Canada: the Journey...

- 2009: BC Building Code revised to increase height limit for wood-frame construction from 4 to 6 storeys
- 2013: Régie du Bâtiment du Québec (RBQ)
- 2015: Ontario Building Code
- 2015: Alberta Building Code
- 2015 National Building Code of Canada

Expecting 1000's of midrise buildings in Canada next few years!!

EMERGING COMPOSITES NANOCELLULOSE AS THE PARTICLE Transverse Section Growth Ring-7 Cellular Structure

Cell Wall Structure

500µm

Cellulose Nanofibrils (CNF) Capacity 2015 (kg/day)

Paperlogic, USA University of Maine, USA Borregaard, Norway American Process Nippon Paper, Japan Innventia, Sweden NamiCell, France Oji Paper, Japan Stora Enso, Finland UPM, Finland FPInnovations, Canada Norske Skog Daicel, Japan Luleå University of Technology, Sweden **US Forest Products Laboratory, USA**

2,000 1,000 1,000 500 150 100 100 100 Pre-commercial Pre-commercial Pilot Pilot Lab Lab Lab

Additive Manufacturing

- Filaments
- Composites
- Powders
- ...

Building Products

- Wallboard
- Sheathing
- Panels
- ...

Flexible Electronics

- Self Powered
- Display

• Acoustic

• Thermal

• ...

• Structural

Melodea

- Solar
- LED

Rheology Modifier

- Cosmetics
- Food
- Adhesives
- • •

- Epoxy resins
- Paints
- Sealants
- ...

Courtesy Dr. Robert Moon USFS

Foams

Paakko et al., Soft Matter, 2008

Continuous Fibers

- Reinforcement
- Textiles
- Woven
- •

Dong et al., 2012

Yano et al.

Separators/Barrier

- Filtration
- Batteries
- Pumps
- ...

Coatings

Oil & Gas

- Drilling Muds
- Frac Fluids
- Clean-up
- ...

SUMMARY

- Composites refer to a broad spectrum of materials, produced in a variety of ways, with a broad set of markets.
- Advantages include unique properties, wide variety of sizes and appearance, uniform behavior.
- Relatively low amount of composite production in Maine relative to other regions of North America (?resource driven?)

Mass Timber Opportunities in Maine

- 1. European Market has figured it out
- 2. Plentiful SPF #2 or better stock
- 3. Existing Value Chain Logging, Processing, lumber
- 4. Location LEED

500 miles New York

500 miles Boston

9

