Beech Mortality and Drought In Northern Maine

Matthew T. Kasson¹

Committee-William H. Livingston¹ (Chair), David R. Houston², Seanna Annis³, Alan White¹

Collaborators-David Struble⁴, Jim Steinman⁵

¹School of Forest Resources, University of Maine, 5755 Nutting Hall Orono, ME 04468

²USFS Plant Pathologist (Retired)

³Dept. of Bio. Sciences, University of Maine, 5735 Hitchner Hall Orono, ME 04468

⁴Maine Forest Service, Augusta, ME 04330

⁵USFS, FHM, Newtown Squ, PA 19073

McWilliams et al. 2005. Forests of Maine. USDA Forest Service, Forest Inventory and Analysis, Newtown Square, PA

- FIA plots: beech mortality increase from 0.9% to 3.3% from 1995 to 2002.
- Aroostook County average cumulative mortality since 1995
 - 13% for plots measured 1999-2002
 - 44% for plots measured 2003-2004

Drought

- Precipitation was half of normal in 2001.
- Driest areas correspond to areas with high beech mortality.

Hypotheses

- Drought incited mortality event(s)
 - Shallow, well drained soils predisposed trees to stress
 - BBD predisposed trees to drought stress damage
 - Neonectria fungus kills weakened beech
- Warmer winters favoring scale insect incited the decline and mortality

Beech Mortality Study Area

Field Sampling

- 21 townships in four northern counties
- Paired 1/5 acre plots:
 - High mortality Sites (\geq 20% mortality of beech) (x=43%)
 - Low mortality Sites (half the mortality of HMS) (x=12%)
- Soil pit drainage class, total depth, rooting depth
- Measure
 - Diameter of all trees > 5 in.
 - − Core \geq 12 beech and 12 from alternate species
 - dominant or co-dominant
- Beech
 - Abundance of Cryptococcus fagisuga (scale insect)
 - Area of bark with external BBD defects
 - Presence of Neonectria perithecia
 - % Crown dieback

- Use of dendrochronology to evaluate the relationship between
 - Drought
 - Onset of tree dieback and mortality
- Relate severity of mortality to:
 - Site factors
 - Soil & rooting depth
 - Tree age & density
 - Slope and aspect
 - Bark colonization by the Neonectria fungus.

Analysis

Results to Date

- Under-productive beech thickets
 - Vegetative sprouts & seed origin regen.
 - Higher stand densities
 - Typically pole size stems
 - Highly defective tree stems
 - Evidence of Harvesting
- BBD long associated with these stands
 - Well established scale insect pop.
 - Neonectria faginata dominant
 - Neonectria ditissima pop. scarce

Stand Type I-"Aftermath" Forests

Stand Type II- Newly Affected Northern Forest

- Large beech with smooth bark (>200 yrs)
- Presumably unaffected by BBD
 - extreme winter temps– geographic isolation
- Trees now suffering substantial mortality and dieback
 - Scale insect present
 - Both Neonectria present
 - Tarry spot present

Stand Type Distribution

- Type 1 = "Aftermath" forests
- Type 2 = Newly affected forests

Comparison of tree diameter means for living and dead trees in 2 stand types

• Two Neonectria species

- Exotic fungus- Neo. faginata
- Native fungus- Neo. ditissima
- Red perithecia collected
 - − Frozen to -20°C
 - Rehydrated in the lab to induce sporulation
- Ascospore measurements used to differentiate species
 - Length >14.3µm,
 Neo. ditissima
 - Length <13.3µm,
 Neo. faginata
- Isolated cultures sent away for sequencing
 - Amy Rossman, Beltsville

Neonectria Fungus Identification

Fungal isolations confirm identifications

- From 27 trees over 3 townships
 - 3 populations per tree

Revised Hypotheses

- 1. Stand type I
 - Beech stands weakened by BBD for years.
 - Drought occurring in 2001 incited mortality
 - Existing Neonectria populations flourished on stressed trees
 - Neo. Faginata dominant

2. Stand type II

- Beech stands historically unaffected by BBD.
- Warmer winter temperatures advantageous to scale insect.
 - Increasing populations stressed older large trees
- Drought occurring in 2001 incited mortality
- Existing Neonectria populations flourished on stressed trees.
 - Neo. Ditissima dominant

Future Studies

- Sample more field locations to evaluate the revised hypotheses.
 - Sampling regions based on existing climate regions and biophysical regions
 - 10 plots per region (5 townships)
- Continue to characterize *Neonectria* species in each Stand Type in sub-sample of 2006 plots

