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Research plots in many long-term studies of forest ecosystems often cannot be 

used for spatial modeling because of their small scale and nested inventory design.  This 

has been unfortunate as these plots represent some of the best records of structural 

development as affected by forest management.  I developed methodologies to 

reconstruct both tree height growth and spatial pattern in these types of plots from 

historical inventory records and stem-mapped data, and then retrospectively investigated 

3-dimensional structural development as affected by five silvicultural and harvesting 

treatments (unmanaged natural area, commercial clearcut, fixed-diameter limit, 5-year 

selection, and 3-stage shelterwood— with and without precommercial thinning) in a 

long-term, USDA Forest Service study in Bradley, ME.  In order to capture site variation 

and account for the hierarchical inventory design, mixed-effects, nonlinear height-

diameter models were developed for the nine most common tree species in 50 stem-

mapped plots:  Abies balsamea (L.) Mill., Acer rubrum L., Betula papyrifera Marsh., B. 

populifolia Marsh., Picea rubens Sarg., P. mariana (Mill.) B.S.P., Pinus strobus L., 



 

Populus tremuloides Michx., and Tsuga canadensis (L.) Carr.  Height-diameter models 

for the remaining species were fit with generalized nonlinear least squares.  A morphing 

algorithmn was developed and then tested on both simulated and actual point patterns, to 

scale the spatial pattern from nested, sapling subplots (0.020 ha) to the scale of the larger 

tree plots (0.081 ha).  Differences in spatial pattern, species mingling, height 

differentiation, and relative stand complexity index (rSCI) were compared among 

treatments.  Regeneration events, whether induced through natural stand breakup or by 

harvesting, increased aggregation in spatial pattern and reduced species mingling.  This 

pattern was heightened when treatments shifted species composition more towards 

hardwood species.  Variation in height differentiation and rSCI was generally highest in 

the natural areas and 5-year selection compartments, intermediate in commercial clearcut 

and fixed diameter-limit compartments, and lowest in 3-stage shelterwood compartments.  

Divergence in spatial structure between the two natural areas reflects natural stand 

development within this forest and is an appropriate benchmark for management.  The 

reconstruction model developed here can be applied to other long-term studies where the 

lengthy temporal scale can substitute for small spatial scale. 



 

 ii

DEDICATION 

D and Zy: 

To the two most important girls in my life, you will always have my gratitude and love. 



 

 iii

ACKNOWLEDGEMENTS 

I would like to first thank my advisor, Dr. Robert Wagner, for help in honing my 

research skills and mentoring me throughout my residency here at the University of 

Maine.  I also would like to thank my committee members, Drs. John Brissette, Malcolm 

Hunter, Jr., Robert Seymour, Jeremy Wilson and the late Raymond O’Connor for their 

reviews and guidance.  Lastly, I would like to again thank John Brissette and the USDA 

Forest Service at the Penobscot Experimental Forest, Rick Dionne and Tim Stone, for use 

of field sites and access to their long-term datasets. 

Without Spencer Meyer, Sally Gilbert, Jennifer Becker, Matt Labelle, Blanka 

Peridot, Matt Pettengill, Dan Rosso, and Maggie Burke, I never would have gotten all the 

data collection done.  Without Darci Schofield, Keith Kanoti and Matt Olson, I would 

have never gotten to see my family as I tried to juggle this dissertation and my FERP 

duties.  Without Micah Pace, I may have drowned in or gotten run over by another boat 

in my rookie year of the Keneduskeg Stream Race.  And without Dena and Zylee, I 

would not have had smiling faces to come home to. 

For those I have not listed, thank you.  I think almost everyone in Nutting Hall 

helped me in one way or the other through the last few years. 

This work was supported by the Maine Agricultural and Forest Research Station 

at the University of Maine (MAFES # 2795) and USDA National Research Initiative 

(Project # ME0-2000-0700). 

…and I didn’t fiddle with the numbers either. 

Dave Struble 



 

 iv

TABLE OF CONTENTS 

DEDICATION.................................................................................................................... ii 

ACKNOWLEDGEMENTS............................................................................................... iii 

LIST OF TABLES........................................................................................................... viii 

LIST OF FIGURES .............................................................................................................x 

PROLOGUE ........................................................................................................................1 

Chapter 

1. ALLOMETRIC RELATIONSHIPS FOR TREE SPECIES OF CENTRAL 

MAINE:  HEIGHT-DIAMETER MODELS WITH RANDOM 

COEFFICIENTS AND SITE VARIABLES ...........................................................7 

1.1. Abstract ........................................................................................................7 

1.2. Introduction..................................................................................................8 

1.3. Methods......................................................................................................11 

1.3.1. Study Area and Field Measurements .............................................11 

1.3.2. Statistical Analysis.........................................................................12 

1.4. Results........................................................................................................17 

1.5. Discussion..................................................................................................24 

2. APPLICATION OF MORPHING TO COMMON FOREST 

INVENTORY PLOTS FOR SPATIAL POINT PATTERN ANALYSIS ............27 

2.1. Abstract ......................................................................................................27 

2.2. Introduction................................................................................................28 

2.3. Background................................................................................................34 



 

 v

2.3.1. Morphing........................................................................................34 

2.3.2. Spatial Metrics ...............................................................................36 

2.3.2.1.  Clark-Evans Nearest Neighbor Index ..............................36 

2.3.2.2.  K(d) Function ...................................................................37 

2.4. Methods......................................................................................................40 

2.4.1. Experiment I:  Edge Correction of Circular Plots..........................40 

2.4.2. Experiment II:  Scaling of Circular Plots.......................................41 

2.4.3. Point Pattern Generation ................................................................43 

2.5. Results & Discussion .................................................................................46 

2.5.1. Experiment I:  Edge Correction of Circular Plots..........................46 

2.5.2. Experiment II:  Scaling of Circular Plots.......................................52 

2.6. Application.................................................................................................57 

2.7. Conclusions................................................................................................64 

3. SPATIAL RECONSTRUCTION AND STRUCTURAL DYNAMICS OF 

ACADIAN MIXEDWOOD STANDS TREATED WITH VARIOUS 

SILVICULTURAL AND CUTTING METHODS ...............................................68 

3.1. Abstract ......................................................................................................68 

3.2. Introduction................................................................................................69 

3.3. Methods......................................................................................................75 

3.3.1. Study Area .....................................................................................75 

3.3.2. Long-Term Study...........................................................................76 

3.3.3. Field Measurements .......................................................................78 

3.3.4. Spatial Reconstruction Model........................................................79 



 

 vi

3.3.5. Statistical Analysis of Structural Dynamics ..................................86 

3.3.5.1.  Clark-Evans Nearest Neighbor Index ..............................86 

3.3.5.2.  K(d) Function ...................................................................87 

3.3.5.3.  Mingling Index.................................................................89 

3.3.5.4.  Size Differentiation Index................................................90 

3.3.5.5.  Stand Complexity Index ..................................................90 

3.3.5.6.  Summarizing and Testing of Spatial Indices ...................91 

3.4. Results........................................................................................................93 

3.4.1. Stand Characteristics and Size Structure .......................................93 

3.4.2. Spatial Patterning ...........................................................................99 

3.4.3. Species Mingling .........................................................................105 

3.4.4. Height Differentiation..................................................................107 

3.4.5. Structural Complexity..................................................................110 

3.4.6. Summary of Structural Development ..........................................112 

3.5. Discussion................................................................................................114 

3.5.1. Silvicultural Effects on Structural Development .........................114 

3.5.2. Adequacy of the Stand Complexity Index ...................................118 

3.5.3. Discriminatory Power of the Spatial Indices ...............................119 

3.5.4. Effectiveness of the Spatial Model ..............................................120 

EPILOGUE......................................................................................................................123 

Strengths and Limitations ....................................................................................124 

Recommendations................................................................................................127 

Future Directions .................................................................................................129 



 

 vii

BIBLIOGRAPHY............................................................................................................132 

APPENDICES .................................................................................................................146 

Appendix A.  R Code Used for Morphing Experiments......................................147 

A.1. Point Pattern Generation ..............................................................147 

A.2. Population-Level Statistics and Figures.......................................149 

A.3. Function Definitions Used For Sample Plot Calculations ...........151 

A.4. Sample Plot Generation and Summary Statistics 

Calculation ...................................................................................158 

Appendix B.  Stem Maps of Forest Service Plots................................................166 

Appendix C.  Bootstrapped ( )dL̂  Functions of Forest Service 

Compartments ..........................................................................................218 

BIOGRAPHY OF THE AUTHOR..................................................................................249 



 

 viii

LIST OF TABLES 

Table 1.1. Summary statistics of the diameter at breast height (DBH) and height 

of trees by species. ........................................................................................14 

Table 1.2. Weighting power (Δ), model parameters, variance components for 

the random effects, residual mean squared error (φ), and fit statistics 

for the four models described in the text. .....................................................18 

Table 2.1. Results for one-way and paired t-tests for the 1,000 sample-plot 

estimates of the Clark-Evan statistic using the Donnelly (1977) and 

morphed edge correction techniques (CEdon and CEmor, respectively) 

against the population-level CE statistic (CEpopl), and the mean 

difference (diff) between the two edge correction estimates for each 

of the 9 point pattern by target sample size (Ntar) combinations. .................47 

Table 2.2. Number of sample plots out of 1,000 that showed significant CEs or 

( )dL̂  values (at any lag distance) for the morphing and Donnelly or 

Ripley, respectively, edge-corrections for each of the point pattern 

by target sample size (Ntar) combinations. ....................................................48 

Table 2.3. Average sample size (n), and mean and standard deviation of the 

Clark-Evans statistic (CE) for the control and the three scaling 

options listed in the text, as calculated from 1,000 sample plots 

across the nine point pattern by target sample size (Ntar) 

combinations. ................................................................................................53 



 

 ix

Table 2.4. Number of sample plots out of 1,000 that showed significant CEs or 

( )dL̂ ’s (at any lag distance) for the control and the three scaling 

options listed in the text for each of the point pattern by target 

sample size (Ntar) combinations. ...................................................................54 

Table 3.1. Number of locations and relocation rates for management 

compartments of the natural area (NA), commercial clearcut (CC), 

fixed-diameter limit (DL), the 5-year selection (5S) and the 3-stage 

shelterwood (SW). ........................................................................................81 

Table 3.2. Chapman-Richards height-diameter models (Equation 3.1) for less 

common species measured in this inventory and for archived USFS 

species categories..........................................................................................83 

Table 3.3. Distributional statistics for location types and distance classes within 

the stem-mapped trees of this study..............................................................85 

Table 3.4. Significantly clustered (C) or uniform (U) spatial patterns of 

compartments for inventories from 1974-2002, based on a 95% 

bootstrapped confidence envelope of mean K(d) at 0.5 m steps and a 

95% confidence interval calculated on 1,000 simulations of complete 

spatial randomness (csr) of the same average density. ...............................101 



 

  x

LIST OF FIGURES 

Figure 1.1. Density and basal area distribution of sample plots as they vary by 

silvicultural treatment (NA = unharvested natural area control, 

CC = unregulated commercial clearcut, DL = fixed diameter limit, 

5S = 5-year selection system, and SW = 3-stage shelterwood). ...................13 

Figure 1.2. Mixed-effect models (solid line) and a population-wide general least 

squares model (dashed line) for the relationship between height and 

diameter at breast height for red and black spruce as measured across 

the two replicates (top and bottom rows) of each of the five treatments...........21 

Figure 1.3. Comparison of plot-level estimates of a and c parameters from 

Model II as they vary by silvicultural treatment (CC = unregulated 

commercial clearcut, DL = fixed diameter limit, 5S = 5-year 

selection system, SW = 3-stage shelterwood, and NA = unharvested 

natural area control) for nine tree species.....................................................23 

Figure 2.1. Point maps and the population-level ( )dLpopl
ˆ  with increasing lag 

distance (d) for the three simulated point patterns used in both 

simulation experiments. ................................................................................45 

Figure 2.2. Difference between population-level ( )dLpopl
ˆ  and mean sample plot 

( )dL̂  functions with increasing lag distances (d) and using the 

morphing and Ripley edge-correction algorithms ([2.14] and [2.13], 

respectively), as calculated from 1,000 plots of targeted sample size 

(Ntar) for clustered, random, and regular point patterns................................50 



 

  xi

Figure 2.3. Difference between population-level ( )dLpopl
ˆ  and mean sample plot 

( )dL̂  functions with increasing lag distance (d) for the control and 

the three scaling options listed in the text, as calculated from 1,000 

plots of targeted sample size N for clustered, random, and regular 

point patterns.................................................................................................56 

Figure 2.4. One example of a stem-mapped plot from the A) commercial 

clearcut, B) fixed diameter limit, C) 5-year selection, D) 3-stage 

shelterwood with spacing, and E) unharvested control. ...............................60 

Figure 2.5. Relationship between the Clark-Evans statistic of the unscaled, 0.020 

ha subplot (CEori), and the subplot as scaled to the 0.081 ha plot 

using the morphing algorithmn (CEsca).........................................................63 

Figure 2.6. Mean difference between ( )dLsca
ˆ  and ( )dLori

ˆ  versus lag distance 

(d) in m..........................................................................................................65 

Figure 3.1. Two views of the initial stand conditions during the establishment 

(1952-1957) of USDA Forest Service’s long-term silvicultural 

experiment in the Penobscot Experimental Forest, Bradley, ME.................78 

Figure 3.2. Inventory dates (open triangles) and harvest entries (filled circles) 

for the 10 USFS management compartments used in this study. .................80 

Figure 3.3. Basal area and stem density by compartment for the unmanaged 

natural area and four management treatments from 1974 – 2002. ...............94 

Figure 3.4. Proportion of basal area by species or species group for the 

unmanaged natural area and four management treatments on 

compartments from 1974 – 2002. .................................................................95 



 

  xii

Figure 3.5 Proportion of density by species or species group for the unmanaged 

natural area and four management treatments on compartments from 

1974 – 2002. .................................................................................................96 

Figure 3.6 Shifts in diameter distributions for the unmanaged natural area and 

four management treatments on compartments from 1974 – 2002. .............97 

Figure 3.7. Mean Clark-Evans (CE) nearest neighbor index for both saplings 

and trees (a) and only trees >11.4 cm dbh (b) for the unmanaged 

natural area and four management treatments on compartments from 

1974 - 2002. ................................................................................................100 

Figure 3.8. Mean species mingling index (DM) for all stems (a), hardwood 

stems only (b) and softwood stems only (c) for the unmanaged 

natural area and four management treatments on compartments from 

1974 – 2002. ...............................................................................................106 

Figure 3.9. Mean height differentiation index (TH) for the unmanaged natural 

area and four management treatments on compartments from 

1974 - 2002. ................................................................................................108 

Figure 3.10. Frequency distribution of the height differentiation index value for 

individual tree stems (THi) or the unmanaged natural area and four 

management treatments on compartments from 1974 – 2002....................109 

Figure 3.11. Mean absolute (a) and relative (b) stand complexity index (SCI) or 

the unmanaged natural area and four management treatments on 

compartments from 1974 – 2002. ...............................................................111 



 

  xiii

Figure 3.12. Nonmetric multidimensional scaling (NMS) ordination of spatial and 

nonspatial structural variables for the management compartments 

over the period of approximately 1974-2002, as separated by 

treatment. ....................................................................................................113 

 

Figure B.1. Example realization of the morphing algorithm used to scale each of 

the 50 U.S. Forest Service plots at the Penobscot Experimental 

Forest in Bradley, ME, measured within this study....................................167 

Figure C.1.  Bootstrapped ( )dL̂  functions for the U.S. Forest Service 

compartments at the Penobscot Experimental Forest in Bradley, ME. ......220 

 

 



 

 1

PROLOGUE 

Forest structure is a broadly defined term, relating to the physical arrangement, 

intermixing and composition, and size distribution of trees and other components within a 

stand.  Forest structure is fundamentally linked to ecological function and processes 

which both affect and react to forest structure (McElhinney et al. 2005).  For example, the 

spatial arrangement of forest canopies affects both seed rain and understory light, 

interception which in turn influences the germination and subsequent growth rates of tree 

regeneration that ultimately determines future forest composition.  Increased amounts of 

forest structure generally increase the array of habitats and niches available, thereby 

increasing the alpha biodiversity of the stand (MacArthur and MacArthur 1961, Willson 

1974, Kimmins 1997, Brokaw and Lent 1999, Lähde et al. 1999, Zenner 2005).  Lastly, 

forest structure is often an indication of the history of a stand, either through management 

and cutting practices (Montes et al. 2005, Stamatellos and Panourgias 2005) or natural 

disturbance events like fire (Fúle and Covington 1998). 

Forest management affects forest structure by manipulating its components 

through silvicultural activities to achieve goals determined by the land manager or owner.  

Silvicultural practices have often simplified forest structure, turning relatively complex 

and highly variable natural structures into more uniform structures (O’Hara and Gersonde 

2004), with a goal of providing a sustainable wood supply (Hawley and Hawes 1925, 

Smith 1962).  This approach has often been based on the false assumption that these 

managed structures mimic those created by the natural disturbances (Lindenmayer and 

Franklin 2002).  Even-aged silvicultural methods have been modeled after large-scale, 

stand-replacing disturbance events, but often ignore differences in the spatial and 
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temporal variability of stand structure between harvested and naturally disturbed forests 

(Seymour and Hunter 1999, Seymour et al. 2002).  These methods also may not provide 

sufficient amounts of deadwood that are common after most stand-replacing disturbances 

and essential to ecological function (McComb and Lindenmayer 1999).  Uneven-aged 

selection systems, that are touted as maintaining a high level of structural diversity 

compared to even-aged systems, are for most part quite artificial (O’Hara 2001) and 

rarely explicitly retain decadent trees, snags or logs (Lindenmayer and Franklin 2002), or 

replicate the more irregular aged-structures that are commonly found in remaining old-

growth stands within the Northeast and elsewhere (Fraver and White 2005, Kenefic et al. 

2005b).  Many of these concerns have lead to the development of “close-to-nature” or 

“disturbance-based” silvicultural systems that try to more closely link silvicultural 

prescriptions to natural disturbance regimes and structures within a given region (Schütz 

1999, Seymour and Hunter 1999, Saunders and Wagner 2005, Keeton 2005). 

The structural dynamics (i.e., the changes in forest structure over time) of 

unmanaged stands have commonly been used as references or benchmarks for 

determining the success of forest management activities (Solomon and Gove 1999).  In 

unmanaged, even-aged, single-species stands, structural dynamics can be relatively 

straightforward; stands progress through predictable developmental stages (e.g., stand 

initiation, stem exclusion, stand re-initiation and old growth phases, sensu Oliver and 

Larson [1996]) that are akin to the structural development of the stand.  For example, 

regardless of the structural variables used, forest structure usually remains relatively 

“low” in these forests until the stand re-initiation phase of development.  In stands other 

than even-aged, single-species, structural development can be exceedingly complex.  For 
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example, even-aged stands with several species of varying growth rates can form even-

aged stratified mixtures that, by its structural features, appear “uneven-aged” in 

appearance (Toumey 1928, Smith 1962).  In contrast, uneven-aged stands containing a 

mixture of intermediate and shade tolerant tree species can appear quite “even-aged” in 

its structural characteristics during certain times of its development (pers. observation).  

Watt (1947) suggested that natural, nearly pure, all-aged beech forests operated as a 

mosaic of uneven-sized, single-aged patches that were temporally asynchronous; this 

work was the foundation of the gap-phase dynamics model for structural development in 

uneven-aged stands (Picket and White 1985, Barnes et al. 1998, Gratzer et al. 2002).  

Regardless, dynamics of structural development in more complex stand structures can 

appear almost “chaotic” in that future states are inherently sensitive to the initial 

conditions (e.g., tree densities, tree age structure, species composition, and spatial 

patterns) and the timing and strength of processes that operate across different scales 

(e.g., interspecific competition vs. natural disturbance patterns). 

These perceptions have led some researchers to abandon the patch- or gap-based 

models of forest dynamics in complex stands, and develop spatially explicit individual 

tree-based models of structural development.  Advances in spatial ecology allow 

researchers to focus on neighborhood interactions among trees, explicitly quantifying 

how the competitive influences among individuals change with distance and tree size, 

and then incorporate these effects into stand development models (Pacala et al. 1996).  

However, significant challenges still remain in parameterizing these models and using 

them to investigate forest dynamics.  These challenges include (Gratzer et al. 2004):  1) 

describing vegetative development and spatial structures across a range of forest types; 2) 
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identifying relevant ecological processes that generate these structures; and 3) 

understanding the consequences of the generated structures for community dynamics.  

Empirical studies of spatial pattern and process, and development and parameterization of 

these spatially-explicit models are integral parts of any research effort into forest stand 

dynamics (Gratzer et al. 2004). 

However, there are challenges to obtaining the data necessary to quantify spatial 

relationships and parameterizing spatially explicit models.  Three approaches have been 

used (Gratzer et al. 2002, Montes et al. 2005): chronosequences, retrospective studies and 

permanent sample plots..  Chronosequences, or temporary plots used to sample several 

forest developmental stages, have been used to access the changes in structure due to 

management (e.g., Zenner 2004), but they require similar sites and stand histories that 

often differ significantly among sampled stands.  Retrospective studies use a variety of 

historical evidence (e.g., photos, land-use records, pollen analysis, dendrochonological 

reconstructions) to describe development (e.g., Montes et al. 2005), but do not 

necessarily lend themselves to causal descriptions of changes in pattern from an 

ecological process.  Permanent sample plots are, by far, the most desirable for two 

reasons.  First, the process can be directly measured through repeated samples, e.g., rates 

of colonization can be estimated from seed trap collections.  Second, permanent plots are 

the only reliable method to validate model results (Gratzer et al. 2004).  Unfortunately, 

few spatially explicit plots exist that are sufficiently large (> 0.1 ha) and span more than 

20 years (e.g., Peterson and Squiers 1995).  Instead, most permanent plots are associated 

with forest growth and yield inventory systems (e.g., USDA Forest Service’s Forest 

Inventory and Analysis plots) which are often too small and measure different 
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subpopulations of trees at different scales.  As a result, the use of growth and yield plots 

for spatial structural analysis of forest structure; research to adapt spatial statistical 

analyses to these plots is needed since growth and yield plots offer some of the longest-

running, spatially explicit datasets available. 

The work presented in this thesis reconstructs and models the spatially explicit 

structure of stands that were manipulated by five silvicultural and harvesting treatments 

using a longitudinal dataset from the USDA Forest Service study at the Penobscot 

Experimental Forest (PEF) in Bradley, ME.  I had two objectives.  First, I developed 

methodology to overcome the limitations of growth and yield inventories in spatial 

analyses; methodology that should be useful for both calibrating and validating spatially 

explicit, individual-tree models with growth and yield plot data and for visualizing 

structural development.  The long-term dataset from these sites were typical of most 

growth-and-yield inventory designs, using small-scale (<0.1 ha), nested plot arrays to 

estimate changes in forest structure using such parameters as changes in basal area, 

diameter distributions and species composition.  Height data were lacking and different 

subpopulations of trees were sampled on different sized plots, making straightforward 

analysis of spatial pattern using established methodology difficult, if not impossible.  

Second, I compared spatial parameters over time among the five silvicultural and 

harvesting treatments to access the effects of management on the structural development 

of forest stands.  This work should be useful to managers in determining which 

silvicultural systems come closest to emulating natural structural development in the 

Northeast. 
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This thesis is divided into three main chapters and a concluding epilogue.  

Chapter 1 outlines the development of mixed-effect, height-diameter models for nine tree 

species, using allometric data collected from 6,146 trees (between 136 and 2,615 trees per 

species) across 50 plots within 10 structurally diverse management compartments on the 

PEF.  This approach allows estimates of past tree height to be calibrated to specific 

compartments and plots, thereby reducing potential irregularities in the reconstruction 

model.  Chapter 2 introduces and tests, using both computer simulation and application to 

real data, a technique called “morphing” which can be used to scale up the spatial pattern 

in nested subplots to that of the larger sample plot.  Chapter 3 describes the development 

of the reconstruction model using the results and techniques from Chapters 1 and 2.  

Chapter 43 then summarizes the changes in spatial pattern, species mingling (i.e., 

intermixing), height differentiation, and stand complexity index (SCI; Zenner and Hibbs 

2000) over time across the ten management compartments treated by one of five 

silvicultural and harvesting treatments (unmanaged natural area, commercial clearcut, 

fixed-diameter limit, 5-year selection, and 3-stage shelterwood— with and without 

precommercial thinning). 
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Chapter 1 

ALLOMETRIC RELATIONSHIPS FOR TREE SPECIES OF CENTRAL MAINE:  

HEIGHT-DIAMETER MODELS WITH RANDOM COEFFICIENTS AND SITE 

VARIABLES 

1.1. ABSTRACT 

Height-diameter models were developed for nine common northeastern tree 

species:  Abies balsamea (L.) Mill., Acer rubrum L., Betula papyrifera Marsh., B. 

populifolia Marsh., Picea rubens Sarg., P. mariana (Mill.) B.S.P., Pinus strobus L., 

Populus tremuloides Michx., and Tsuga canadensis (L.) Carr.  Data were collected from 

6,146 trees (between 136 and 2,615 trees per species) on 50 plots within 10 structurally 

diverse stands created by a long-term silviculture study at the Penobscot Experimental 

Forest in central Maine.  Models were fitted using both generalized nonlinear least 

squares (GNLS) and multi-level, mixed-effects approaches.  Site variables (tree density 

and plot basal area) were included in mixed-effects models to help account for variability 

in the random coefficients.  While a mixed-effects approach was superior to a GNLS 

approach, the inclusion of site covariates in the mixed-effect model led to significant, but 

not large improvements in model fit for each species.  Analysis of the plot-level 

parameter estimates suggested that differences in stand structure (even-aged vs. uneven-

aged silvicultural practices) had significant influences on the height-diameter 

relationship.  Calibration of these models to other stands should include a number of trees 

across the range of size classes, not just the largest or dominant trees in a stand as other 

studies have suggested. 
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1.2. INTRODUCTION 

The allometric relationship between tree diameter and total tree height is 

commonly used to estimate tree volume and thus is a fundamental component of many 

growth and yield, functional, and forest planning models (Meyer 1940, Yuancai and 

Parresol 2001).  This relationship is highly site-dependent and not constant over time, 

even in the same stand (Curtis 1967).  Traditionally, height-diameter models had to be 

developed specific to very localized regions, site fertility classes, and/or structural stand 

types (e.g., even-aged plantations), or include site and regional parameters that defined 

these variables within the model itself (e.g, Ek et al. 1984).  Furthermore, height-diameter 

models were often sensitive to forest management practices that changed competitive 

relationships among neighboring trees (Fang et al. 2001, Daggett 2003).  These 

limitations required foresters and researchers to develop site-specific diameter-height 

models, rather than using broader, regional models that were far less accurate or precise. 

Earlier modeling efforts focused only on describing the mean parameter values of 

the height-diameter relationship and centered on functional model forms that were both 

biologically meaningful and statistically flexible (Curtis 1967, Huang et al. 1992, Fang 

and Bailey 1998, Peng et al. 2001).  Recently, focus has shifted towards understanding 

the variability in parameter estimates over the spectrum of stand conditions.  Although 

other techniques have been used, most current modeling efforts have used mixed-effects 

models that simultaneously include both fixed coefficients to explain population-wide 

average response and random coefficients that explain variability in the response in a 

given sampling unit (e.g., study, stand, or plot; Pinheiro and Bates 2000, Calama and 

Montero 2004). 
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Mixed-effects models offer several benefits over ordinary linear (OLS), 

generalized nonlinear least squares (GNLS), and other approaches.  First and foremost, 

mixed-effect models can incorporate the hierarchical structure of data collection in 

analysis and reduce interdependence among measurements from the same sample unit by 

specifically defining a covariance matrix among random parameters within and among 

sampling levels (Calama and Montero 2004, Demidenko 2004).  This approach can 

reduce dependence on site-index curves for growth and yield modeling (Lappi and Bailey 

1988, Hall and Bailey 2001).  Second, mixed-effect models are statistically efficient.  

Mixed-effects models are compromises between OLS and GNLS models that ignore 

sample unit variability and fully parameterized models that fit each sample unit 

separately (Pinheiro and Bates 2000).  For example, a nonlinear model with three 

parameters estimated over 20 stands would have 3 x 20 = 60 parameters when fully-

parameterized, while a single-level, nonlinear mixed-effects model would have 9 – 15 

parameters, depending on the structure of the covariance matrix and assuming all three 

fixed parameters each had an associated random parameter.  Third, because the variation 

in the parameter estimates is known at each level of the hierarchical sampling structure, 

mixed-effect models provide unbiased estimation of model parameters for sample units 

with very small sample sizes.  Lastly, mixed-effects models can be calibrated for new, 

unsampled plots or stands quickly and effectively (Mehtätalo 2004), particularly if values 

of the random parameters can be predicted from covariates.  Some height-diameter 

mixed-effects models can be calibrated with as few as 4-10 tree heights per sample unit 

with minimal introduction of bias (Calama and Montero 2004, Lynch et al. 2005). 
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The NE-TWIGS variant of the individual-tree growth model Forest Vegetation 

Simulator (FVS; Bush 1995) includes one of few height-diameter models for the 

northeast region.  While accurate enough for some species and regions, height estimates 

from NE-TWIGS have been largely imprecise when applied to mixed-conifer stands in 

northern New England, often requiring the development of site-specific functions (i.e., 

Daggett 2003).  This has occurred for two related reasons.  First, NE-TWIGS uses a 

Chapman-Richards model that is largely unadapted from Ek et al.’s (1981, 1984) study of 

Lake States species; geographical differences in stand history, silvicultural treatment and 

soil properties between the Lake States and the Northeast likely change the allometric 

relationship between height and diameter.  Second, the NE-TWIGS model includes site 

index and basal area as covariates.  These adjustments give the function additional 

adaptability, but can make it difficult to apply to the mixed species, uneven-aged 

stands—that are common to this region—where site indices cannot be determined by 

traditional approaches.  Mixed-effects modeling may be an alternative approach since site 

differences would be captured by the random parameters. 

Therefore, this study develops height-diameter models for nine tree species found 

throughout northern New England using both GNLS and mixed-effects modeling 

approaches.  Equations were developed for balsam fir (Abies balsamea (L.) Mill.), red 

(Picea rubens Sarg.) and black spruce (P. mariana (Mill.) B.S.P.), eastern hemlock 

(Tsuga canadensis (L.) Carr.), eastern white pine (Pinus strobus L.), red maple (Acer 

rubrum L.), gray (Betula populifolia Marsh.) and paper birch (B. papyrifera Marsh.), and 

quaking aspen(Populus tremuloides Michx.).  Data came from a nested plot design that 

included highly variable structural stand conditions that were created by different 
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silvicultural treatments.  I hypothesized that: 1) models fit with random coefficients 

would outperform those fit only with fixed coefficients; 2) height-diameter relationships 

would differ by silvicultural treatment, and 3) additional plot-level covariants, 

specifically tree density or plot basal area, would further improve model fits and simplify 

model structure by explaining the variability that was captured by the random coefficients 

in the original model. 

1.3.  METHODS 

1.3.1. Study Area and Field Measurements 

The data used in this study came from the Penobscot Experimental Forest near the 

town of Bradley, Maine (44° 52’ N, 68° 38’ W).   This 1,550 ha area lies on soil types 

derived from glacial till and ranging from well-drained loams and sandy loams on glacial 

till ridges to poorly and very poorly drained loams and silt loams in flat areas between the 

ridges (Brissette 1996, Brissette et al. 1999, Brissette and Kenefic 2000).  Cover types are 

dominated by Acadian Region softwoods including red, white (P. glauca (Moench) 

Voss) and black spruce, balsam fir, eastern white pine, eastern hemlock, and northern 

white cedar (Thuja occidentalis L.).  Common hardwoods in these types include red 

maple, paper  and gray birch, and quaking  and bigtooth aspen (P. grandidentata Michx.).  

Natural stand structures in this region are typically uneven-aged and diverse with 

windstorms and insect epidemics as the major disturbance events.  Stand replacing fires 

are thought to occur less than once per 1,000 years in these types (Lorimer 1977). 

The dataset was obtained from measurements on a subset of long-term plots 

established in 1952 by the USDA Forest Service (USFS) to monitor the effects of five 

silvicultural and three exploitative harvest systems on stand growth, yield, and structure 
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within the Acadian Forest region.  Beginning in June 2001 and continuing through 

August 2002, 7,938 trees were measured and stem-mapped on 50 plots of the study—10 

plots each in unregulated commercial clearcut (CC), fixed diameter limit (DL), 5-year 

selection (5S), 3-stage shelterwood (SW), both with and without spacing treatments, and 

unharvested natural area control treatments (NA).  Marking prescriptions and harvesting 

techniques and timings for each treatment are described extensively in Sendak et al. 

(2003).  Plots were nested with all trees >11.45 cm (4.5 in) diameter at breast height 

(DBH) measured within a 0.081 ha (0.20 ac) plot and trees >1.27 cm DBH (0.5 in) 

measured on a smaller, interior 0.020 ha (0.05 ac) plot.  Heights were measured to the 

nearest 0.1 m either directly, using 10 and 15 m telescoping height poles, or as an average 

of 2-4 readings from a Haglöf hypsometer (Haglöf 2002). 

With the full dataset, basal area and density were calculated for each plot (Figure 

1.1).  The dataset was then trimmed of all cull, dying and leaning trees.  Of the 26 species 

recorded, only 9 species—balsam fir, red maple, paper and gray birch, red and black 

spruce, white pine, trembling aspen, and eastern hemlock—occurred in high numbers 

(n > 100) and across a majority of the stands and plots.  Red and black spruce hybridize 

extensively within the PEF and were grouped together for this analysis.  Summary 

statistics for each species are given in Table 1.1. 

1.3.2. Statistical Analysis 

Several nonlinear functional forms have been used to model height-diameter 

relationships (Huang et al. 1992, Peng et al. 2001).  Although other mixed-modeling 

efforts have used functional forms that could be linearized and/or exponential (Calama 

and Montero 2004, Mehtätalo 2004, Nanos et al. 2004), sigmoid models are more 
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Figure 1.1. Density and basal area distribution of sample plots as they vary by 

silvicultural treatment (NA = unharvested natural area control, CC = unregulated 

commercial clearcut, DL = fixed diameter limit, 5S = 5-year selection system, and SW = 

3-stage shelterwood).  
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Table 1.1. Summary statistics of the diameter at breast height (DBH) and height of 

trees by species.  Total sample size (N), the number of stands and plots that the species 

was observed in is also given. 

DBH (cm) Height (m) Species N Stands Plots 
Mean S.D. Range Mean S.D. Range 

Balsam fir 2615 10 47 5.7 4.9  1.3 – 29.2 5.35 3.34  1.65 – 20.25 

Red & black spruce 1415 10 43 7.1 6.9  1.3 – 47.2 6.05 4.00  1.70 – 27.00 

Eastern hemlock 831 10 41 12.0 12.5  1.3 – 67.8 8.55 6.46  1.98 – 27.90 

Eastern white pine 181 10 26 21.8 19.2  1.4 – 81.5 13.32 9.44  2.26 – 33.73 

Red maple 547 10 45 9.1 8.2  1.3 – 43.5 9.50 5.42  2.01 – 24.65 

Gray birch 238 6 21 4.4 2.3  1.3 – 13.0 6.82 2.31  2.06 – 12.22 

Paper birch 183 9 29 5.8 6.0  1.3 – 30.1 6.91 4.25  2.37 – 23.70 

Quaking aspen 136 6 15 9.3 8.8  1.3 – 45.4 10.16 4.38  2.80 – 24.50 

 

biologically appropriate for height-diameter relationships (Yuancai and Parresol 2001).  

In a preliminary study using weighted OLS, fits of the data with a 3-parameter form of 

the Chapman-Richards function (Richards 1959) were slightly better and converged more 

often than 3-parameter Weibull (Weibull 1951), modified logistic (Ratowsky and Reedy 

1986), or exponential (Ratowsky 1983) functions.  In this study, the Chapman-Richards 

function was parameterized as (here after referred to as Model I): 

( )[ ] ε+−+= ⋅ 00  e135.1 0
cDBHbaHT  [1.1] 

where HT is tree height (m), DBH is tree diameter at breast height (cm), a0, b0, and c0 are 

estimated, fixed (population-wide) parameters, and ( )φε ,0~ N .  In a multi-level, mixed-

effects model, random coefficients can be assigned to each parameter at each level (stand 

and plot in this study), and have a complex variance-covariance structure that varies 
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among parameters and levels.  However, as Hall and Bailey (2001) suggest, this 

complexity can lead to nonidentifiability and ill-conditioning, with convergence 

becoming computationally intensive and difficult.  Trial analyses with random 

coefficients at both stand and plot levels for all three fixed parameters only converged 

with large sample sizes (n > 1000).  In these runs, random coefficients for b0 and c0 were 

highly correlated, therefore I simplified the full random model to (Model II): 

( ) ( )[ ]( )
ευυ

ωω
+−+++=

++⋅ PScDBHb
PSaHT 00e135.1 0  [1.2] 

where υS, υP, ωS and ωP are random coefficients at the stand (S) and plot (P) levels for a0 

and c0, respectively, and b0 was not allowed to vary randomly.  I also found that complex 

variance-covariance structures prevented convergence when sample sizes were less than 

500, so I simplified the variance-covariance structure to assume that the random 

coefficients were independent at each level or: 
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These simplifications in model structure are not ideal as it limits the flexibility of the 

random model to capture variability and interdependence among residuals at each level; 

however, I wanted to maintain parallelism in analyses among the species within this 

study. 

The next phase in developing a mixed-effect model is determining whether 

covariates can help explain or potentially eliminate random coefficients from a model 
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(Pinero and Bates 2000, Nanos et al. 2004).  I tested the inclusion of the natural logarithm 

of plot-level tree density (ln[trees/ha]; Model III) and total basal area (m2/ha; Model IV) 

as fixed parameters to help explain variability.  These two covariates were chosen 

because they could be reliably calculated from the historical records for the USFS study 

and have been found to be correlated with height growth (Ek et al. 1984, Zhang et al. 

1997).  Other authors have suggested dominant height and/or some index of the 

dispersion of the diameter or height distribution as potential covariates (Fang and Bailey 

1998, Calama and Montero 2004), but it is not clear if these covariates have been applied 

when the data source is obtained from a mix of normally distributed, even-aged and non-

normally distributed, two- or uneven-aged stands.  The original fixed parameters a0, b0 

and c0 where assumed to depend linearly on the covariates (COV).  The model form was: 

( ) ( )[ ]( )
ευυ

ωω
+−++⋅++=

++⋅+⋅⋅+− PSCOVccDBHCOVbb
PSCOVaaHT 1010e135.1 10  [1.4] 

where a1, b1 and c1 are estimated parameters for the covariate, and with a variance-

covariance structure identical to Model II [1.3].  I tested the inclusion of an interaction 

term between tree density and basal area, but the interaction was not significant (p > 

0.05) for many of the species and often caused the model to not converge, often due to 

the high correlation between density and basal area (Figure 1.1). 

 Model I was fit with generalized nonlinear least-squares (the gnls function) and 

Models II-IV were fit with pseudo-likelihood approach for nonlinear mixed-effect models 

(the nlme function) within the nlme package for the R programming language (Pinheiro et 

al. 2005, R Development Team 2005).  Details on the algorithms can be found in 

Pinheiro and Bates (2000, Chapters 5 and 7).  Heteroscedasticity was commonly 

observed in the plot-level residuals for all models during initial runs.  Therefore, I used 
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the varPower function to weight the variance of the residuals by a power of the diameter 

or: 

( ) Δ
=

22
ijkijk DBHVar σε  [1.5] 

where DBHijk are the i tree diameters in plot j of stand k, and Δ is the power of the 

variance covariate. 

 Models were simplified by removing terms stepwise and assessing significance of 

the parameter (fixed or random) by likelihood ratio tests between the original and 

reduced models.  Models were compared using both the Akaike Information Criterion 

(AIC) and Bayesian Information Criterion (BIC), a conservative approach suggested by 

Kuha (2004).  These two criteria differ only slightly in computation, but have different 

properties for model selection with BIC imposing a greater penalty for additional 

parameters than AIC.  They were calculated as (Pinheiro and Bates 2000): 

parnAIC 2logLik2 +−=  

( )NnBIC par loglogLik2 +−=  [1.6] 

where npar is the number of parameters used to fit the model and N is sample size.  For 

both criterion, the smaller the value of either AIC or BIC, the better the model fit the 

data. 

1.4. RESULTS 

Without exception, the mixed-effects modeling approach (Model II) outperformed 

a generalized least squares approach (Model I; Table 1.2).  There were large and 

significant (p « 0.001) improvements in both AIC and BIC for all species by including 

random coefficients in the model.  An example of the difference in fits between the two  
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Table 1.2. Weighting power (Δ), model parameters, variance components for the 

random effects, residual mean squared error (φ), and fit statistics for the four models 

described in the text.  All parameters are significant at α = 0.05 unless noted by “n.s.”  Fit 

statistics include the Akaike Information Criterion (AIC), the Baysian Criterion (BIC), 

and the log-likelihood (LL).  

Fixed Effects 
Species Model Δ 

a0 a1 b0 b1 c0 c1 

Balsam fir I 1.13 14.05 - 0.105 - 1.438 - 
 II 1.03 13.27 - 0.114 - 1.527 - 
 III 1.02 25.76 -1.45 0.115 n.s. 3.187 -0.190 
 IV 1.04 9.96 0.13 0.114 n.s. 1.522 n.s. 

Red & black spruce I 1.23 23.13 - 0.038 - 1.038 - 
 II 0.86 15.99 - 0.094 - 1.465 - 
 III 0.89 35.00 -2.25 -0.093 0.023 1.480 n.s. 
 IV 0.88 16.35 n.s. 0.042 0.002 1.077 0.015 

Eastern hemlock I 0.58 30.11 - 0.025 - 0.941 - 
 II 0.63 22.04 - 0.032 - 0.899 - 
 III 0.65 42.22 -2.73 0.038 n.s 1.657 -0.088 
 IV 0.61 25.41 n.s. 0.009 0.001 0.692 0.009 

Eastern white pine* I -** 39.97 - 0.026 - 1.312 - 
 II 0.98 21.56 - 0.030 - 0.741 - 
 III 0.96 20.97 n.s. 0.087 -0.006 0.746 - 

Red Maple I 0.92 24.16 - 0.049 - 0.935 - 
 II 0.61 17.17 - 0.094 - 1.016 - 
 III 0.61 27.48 -1.24 0.096 n.s. 1.025 n.s. 
 IV 0.61 10.02 0.26 0.136 -0.001 1.057 n.s. 

Gray birch I 0.58 10.16 - 0.276 - 1.514 - 
 II 0.63 9.04 - 0.287 - 1.463 - 
 III 0.65 30.58 -2.33 -0.998 0.140 1.417 n.s. 
 IV 0.61 14.91 -0.22 0.065 0.010 1.227 n.s. 

Paper birch I 1.03 23.21 - 0.049 - 0.917 - 
 II 0.61 14.91 - 0.126 - 1.048 - 
 III 0.68 15.18 n.s. 0.125 n.s. 2.760 -0.190 
 IV 0.63 9.76 0.19 0.125 n.s. 1.178 -0.007 

Quaking aspen I 0.65 19.87 - 0.079 - 0.994 - 
 II 0.66 18.03 - 0.076 - 0.957 - 
 III 0.73 14.77 n.s. 1.142 -0.109 8.191 0.752 
 IV 0.65 6.46 0.31 0.394 -0.009 2.441 -0.044 

 * Model IV was not significant. 
 ** Model would not converge with variance weighting by varPower(). 
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Table 1.2. Continued. 

Random Effects Fit Statistics 
Species Model 

Sν
σ  

Pν
σ  

Sϖσ  
Pϖσ  

φ 
AIC BIC LL 

Balsam fir I - - - - 0.1191 5277 5307 -2634 
 II 1.721 0.112 0.992 0.114 0.1163 4562 4615 -2272 
 III 1.250 n.s. 0.809 0.106 0.1185 4524 4584 -2253 
 IV 0.898 0.106 0.954 0.108 0.1155 4551 4611 -2266 

Red & black spruce I - - - - 0.1080 3471 3497 -1731 
 II 3.927 0.221 0.795 0.053 0.1531 2863 2910 -1422 
 III 3.921 0.211 0.585 0.061 0.1455 2834 2891 -1405 
 IV 3.263 0.220 0.412 0.049 0.1494 2850 2908 -1414 

Eastern hemlock I - - - - 0.1005 2488 2512 -1239 
 II 3.829 0.079 1.665 0.020 0.1291 2266 2309 -1124 
 III 2.193 0.068 1.723 n.s. 0.1281 2253 2300 -1116 
 IV n.s. 0.187 1.730 n.s. 0.1284 2243 2286 -1113 

Eastern white pine* I - - - - 2.8363 896 909 -444 
 II 8.663 0.233 0.564 n.s. 0.0999 614 639 -299 
 III 7.948 0.235 n.s. n.s. 0.1044 606 632 -295 

Red maple I - - - - 0.1860 1830 1852 -910 
 II 2.708 0.090 1.260 n.s. 0.2767 1662 1696 -823 
 III 2.112 0.085 1.217 n.s. 0.2752 1658 1697 -820 
 IV 1.543 0.072 1.176 n.s. 0.2762 1644 1687 -816 

Gray birch I - - - - 0.2570 603 620 -296 
 II 1.172 0.250 0.548 n.s. 0.2115 555 583 -269 
 III 0.857 0.113 0.474 n.s. 0.2039 544 578 -262 
 IV 0.886 n.s. n.s. 0.091 0.2232 550 581 -266 

Paper birch I - - - - 0.1322 464 480 -227 
 II 3.037 0.075 1.302 n.s. 0.1904 395 420 -189 
 III 3.085 0.083 0.992 n.s. 0.1673 389 418 -186 
 IV 1.899 n.s. 1.020 n.s. 0.1832 379 408 -180 

Quaking aspen I - - - - 0.3266 484 499 -237 
 II 2.569 0.116 n.s. n.s. 0.2389 434 455 -210 
 III 2.971 n.s. n.s. n.s. 0.2007 433 456 -209 
 IV 2.750 n.s. n.s. n.s. 0.2323 426 453 -204 
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approaches is shown for red and black spruce in Figure 1.2.  Visually, Model II did a 

much better job at fitting the data specific to each stand, even when there were very few 

data points (e.g., the commercial clearcut stands in Figure 1.2).  Furthermore, Model II 

captured a far wider range of behavior in the height-diameter relationship than Model I.  

Model II was, however, sensitive to a restricted data range within any given plot or stand 

(e.g., the shelterwood stands in Figure 1.2).  This is common problem for many sigmoid 

functional forms of the height-diameter relationship, regardless of the fitting procedure, 

and perhaps a reason why some exponential forms continue to be used.  Therefore, 

calibration of Model II to any other stand should capture a broad range of tree sizes 

observed, and not just a few of the largest trees (but see Calama and Montero 2004). 

Both stand and plot level random coefficients were significant for many of the species, 

although the random effects associated with the “shape” of the height-diameter 

relationship (i.e., the c0 parameter and associated 
Sϖσ  and 

Pϖσ  variance components) 

were less commonly found to be significant, particularly for hardwood species.  Not 

surprisingly, the variance components associated with the stand-level random effects 

(
Sνσ  and 

Sϖσ ) were several times greater than those associated with the plot-level 

random effects (
Pνσ  and 

Pϖσ ).  Some of this increased variability was clearly caused by 

restricted data ranges associated with the silvicultural treatments, but some of the 

variability may indicate differences among sites in quality.  However, when I fit models 

including a site quality covariate that was derived from soil drainage classes of the 

mapped soil profiles of the PEF (Briggs 1994, Briggs and Lemin 1994), site quality was 

not significant for any species. 
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Therefore, the broad differences in structure and competitive conditions among 

the stands could be driving the height-diameter relationships for most species.  A graph 

of the estimated plot-level coefficients of Model II suggests that plots with uneven-aged 

structures (i.e., NA and 5S) occupy different areas of parameter space than plots with 

even-aged (i.e., SW) or highly irregular (i.e., CC and DL) structures (Figure 1.3).  For 

conifers and red maple, the height models have both higher asymptotes (the a parameter) 

more sigmoid shapes (the c parameter) in uneven-aged structures than other structures.  

Eastern white pine, in particular, showed a very strong difference in the height-diameter 

relationships between uneven-aged structures and the shelterwood treatment; this 

difference may be driven by slower height growth from attacks by white-pine weevil 

(Pissodes strobi Peck.) which are more prevalent in open stands (Wilkinson 1983).  For 

early-successional hardwoods, there is no discernable pattern in the coefficients.  

Unfortunately small sample sizes, site differences, and the restricted diameter 

distributions within individual sample units confound statistical tests for specific 

silvicultural treatment effects on the height-diameter relationship (Figure 1.2).  It would 

likely require a longitudinal data set across many more plots within these stands to 

conclusively test for a treatment effect. 

Addition of density (Model III) and basal area (Model IV) plot-level covariates to 

the mixed-model significantly improved model fits for all species (Table 1.2).  However, 

improvements were not dramatic and the additional covariate generally only partially 

described the variation captured by random coefficients in Model II.  Model III was 

superior to Model IV for only three species—balsam fir, red and black spruce, and grey 

birch.  With some obvious exceptions, increasing plot density within Model III negatively 
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Figure 1.3. Comparison of plot-level estimates of a and c parameters from Model II as 

they vary by silvicultural treatment (CC = unregulated commercial clearcut, DL = fixed 

diameter limit, 5S = 5-year selection system, SW = 3-stage shelterwood, and NA = 

unharvested natural area control) for nine tree species. 
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adjusted inflated base parameters (a0, b0, and c0) for most covariate parameters (a1, b1, 

and c1) that were significant (Table 1.2).  Basal area effects were not as prevalent or 

consistent in Model IV, although for five of the species a1 was a positive adjustment to a 

reduced estimated asymptote (a0) from Model II.  Lastly, both Models III and IV were 

sensitive to the range of the covariate used for species with smaller sample sizes.  For 

example, Model IV for quaking aspen gave realistical heights only within a diameter 

range of approximately 2-30 cm and a basal area range of approximately 20-40 m2/ha.  

1.5. DISCUSSION 

Within this study, a mixed-effects approach to modeling the height-diameter 

relationship was superior to a GNLS approach using only fixed effects.  While it can be 

argued that the increased complexity of a mixed model is unnecessary given the small 

gain in precision, these gains in precision multiply rapidly when calculating average plot 

or stand volumes (Bragg 2001).  Furthermore, although GNLS models are not biased 

across the entire dataset, accuracy often will diminish at stand- or plot-levels if the model 

is not parameterized to include covariates specific to describe variation at all levels.  For 

example, Model I in this study consistently underestimated red and black spruce height 

within both natural area controls (Figure 1.2).  Mixed-effects models avoid this behavior 

by incorporating that stand- and plot-level variability into the model form (Lappi and 

Bailey 1988, Hall and Bailey 2001) and then using covariates to explain the variability 

captured by the random effects (Pinheiro and Bates 2000). 

A mixed-effects approach is also attractive when stand- and plot-level covariates 

are not always obvious (Nanos et al. 2004).  Both tree density and basal area were 

obvious plot-level covariates that influence the height-diameter relationship (Parresol 
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1992, Zhang et al. 1997, Daggett 2003).  For example, this study generally agrees with 

Ek et al. (1984) who found that total tree height increased with basal area (Table 1.2).  

However, other potential covariates were not apparent, particularly since the dataset was 

collected from mixed-species stands that included a broad array of structural types.  For 

example, dominant height, although obviously correlated with site quality by Eichorn’s 

rule (Assmann 1970) and used in a mixed-effects model by Calama and Montero (2004), 

was not used as a covariate in this study because canopy position is a function of both 

growth potential and a cumulated history of suppression by older cohorts in multiaged 

stands (Oliver and Larsen 1996).  Spatially explicit indices of plot structure (e.g., Clark-

Evans statistic [Clark and Evans 1954]) could prove useful as covariates in modeling 

height-diameter relationships from multi-aged stands. 

However, this study also highlights the more intense data requirements of mixed-

effects approaches to modeling height-diameter relationships.  First, multi-level, mixed-

effects models with more than two random parameters and/or with complex variance-

covariance structures may have difficulty converging unless sample sizes are quite large 

and well dispersed among all sampling units and sampling levels.  Most published mixed-

effects models have used fitting datasets of >1000 trees, with at least 10-20 trees within 

the intermost sampling unit (Calama and Montero 2004).  Longitudinal models are 

commonly fit with fewer trees per sampling unit, but the multiple measurements per tree 

increase the sample size considerably (Lappi and Bailey 1988, Lappi and Malinen 1994).  

During trial fits in this study, only balsam fir was numerous enough and distributed 

broadly enough across sample units (Table 1.1) for a more complicated version of Model 



 

 26

II, with all three parameters as random and an unrestricted variance-covariance matrix, to 

converge. 

Second, a mixed-effects modeling approach can be quite sensitive to the range of 

tree sizes used to develop the model.  This same concern is apparent when modeling with 

OLS or GNLS approaches, but for the mixed-effect approach, the concern should be 

considerable since the ranges of data in each individual sample unit can influence the 

variance components associated with each random effect.  In this study, young even-aged 

stands had quite different parameter estimates than uneven-aged stands (Figure 1.2 and 

1.3) suggesting that some type of structural covariate should be included as a fixed effect 

in any broader modeling effort.  Choice of a different functional model form may help 

reduce this sensitivity. 

Although the models in this study were developed primarily for descriptive 

purposes, they can be calibrated to new stands quite easily using the methods of Lappi 

(1991).  As suggested earlier, calibration data for these models should include a broader 

range of diameters and more individuals than that recommended by Calama and Montero 

(2004).  The broader range of stand ages and structural classes used within this study 

should give these models wider applicability than many other height-diameter models 

used for tree species in the Northeast. 
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Chapter 2 

APPLICATION OF MORPHING TO COMMON FOREST INVENTORY PLOTS 

FOR SPATIAL POINT PATTERN ANALYSIS 

2.1. ABSTRACT 

Spatial analyses of trees within forest inventory plots have often been avoided due 

to small plot sizes, and nested or clustered plot design.  Instead, most studies of spatial 

relationships among tree stems have relied on a single, large (≥0.5 ha) plot.  This 

disparity has been unfortunate as forest inventory plots provide some of the longest-

running, repeatedly measured, spatially explicit datasets.  I assessed Williams et al.’s 

(2001, 2003) morphing algorithm as a tool for spatial analysis of forest inventory plots.  

Two simulation experiments were used to test the sensitivity of the Clark-Evans (CE) 

nearest neighbor index and the ( )dL̂  function, a transformation of Ripley’s ( )dK̂ , to the 

effects of morphing used as either an edge-correction technique or scaling tool.  

Specifically, population-level estimates were compared to sample plot-level estimates, 

both with and without morphing, of CE and ( )dL̂ .  Comparisons were made for 

clustered, random and regular point patterns over a range of point densities.  For these 

experiments, several approaches to edge-correction and scaling were tested. 

Results suggested that the morphing algorithm introduced some bias into both CE 

and ( )dL̂ , mostly in the form of regularity at a scale near the plot radius.  Bias was most 

pronounced in clustered populations and with low point densities.  With morphing, plots 

were not classifed as clustered, random, or regular patterns as consistently as the more 

established Donnelly (1978) and Ripley (1976) edge-correction techniques for CE and 
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( )dL̂ , respectively.  As such, the morphing algorithm had limited use as an edge 

correction tool.  However, morphing demonstrated significant promise as a scaling tool 

for nested plot/subplot designs, particularly if different subplots within the same stratum 

or stand were used for torodial wrapping within the algorithm.  In this case, morphing 

performed nearly as well as unscaled control plots of twice the original plot size in 

estimating population level CE or ( )dL̂  and during classification of plots into clustered, 

random or regular patterns.   

When applied to actual forest inventory data, the morphing algorithm did not 

significantly change CE estimates (p = 0.442) and was unbiased up to 2.5 m for the ( )dL̂  

function.  Plots with spatial patterns greatly different from other plots within the same 

stand showed the most pronounced changes in CE or ( )dL̂  in response to morphing.  

Therefore, if assessing variation among plots is the primary study objective, individual 

plots should be used for torodial wrapping within the morphing algorithm. 

2.2. INTRODUCTION 

Over the past several decades, spatial point pattern analyses have increasingly 

been used to study forest stand structure and function.  This research has generally been 

descriptive, often focusing on the horizontal structural patterns within the forest, i.e., 

quantification of tree stems as having an aggregated, uniform, or random spatial 

distribution (Pretzsch 1997, Larson and Bliss 1998, Kint et al. 2001, Antos and Parish 

2002, Aguirre et al. 2003).  In these cases, spatial point pattern analysis is useful for 

hypothesis development (Moeur 1993, Thomson et al. 1996) or developing management 

prescriptions (Harrod et al. 1999, Zenner 2000).  Less commonly, spatial pattern is used 
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to explain ecological function.  Laessle (1965), for example, used nearest neighbor 

indices to show that trees were often either aggregated or randomly distributed early in 

stand development, and more uniformly spaced later in development.  Kenkel (1988) 

later attributed this shift in spatial pattern to differential mortality involving two distinct 

competitive phases:  1) an early “scramble phase” where two-sided competition for soil 

nutrients and water reduced the density of individuals in dense patches, and 2) a later 

“contest phase” where one-sided competition for light would differentiate a stand 

reducing clumpiness and density even further.  In another example, Ferrari (1999) found 

that the availability of soil N in an old-growth eastern hemlock (Tsuga canadensis (L.) 

Carr.) – northern hardwood forest was highly influenced by the locations and identities of 

individual trees.  Ferrari suggested that soil N created a positive feedback switch that 

maintained the canopy species patchiness over time.  Finally, spatial point pattern 

analysis can be used to improve or validate model results.  Ménard et al. (2002), for 

instance, used one commonly used spatial metric, the ( )dK̂  function, to validate the use 

of the spatially explicit SORTIE forest succession model (Pacala et al. 1996) for small-

scale disturbance dynamics and impacts. 

While immensely useful, spatial point pattern analyses have data requirements 

that can be limiting.  Clearly, these statistics require precise and accurate tree locations 

within sample plots.  For example, Freeman and Ford (2002) reported that although 

the ( )dK̂  function was generally robust to data management errors such as transcription 

errors and misidentification, it was sensitive to errors inherent to the measurement 

technique and shifted spatial patterns to larger scales.  They argued that ( )dK̂  may not be 

able to accurately identify spatial inhibition, particularly at fine scales.  Likewise, most 
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spatial point pattern statistics compel use of relatively large, compactly-shaped plots 

(e.g., rectangles or circles) for two reasons.  First, all second- and higher-order spatial 

statistics are designed to test for local patterns among the points, not trends across an 

entire study area or extent (Bailey and Gatrell 1995).  Analyses are generally robust with 

sample sizes of greater than 100 locations and for scales of less than 25-50% of the 

minimum dimension of an extent or study area, although this “rule of thumb” varies with 

the individual spatial metric being used.  Plot sizes, therefore, should be much greater 

than the scale of interest and ideally contain a minimum of a several dozen individuals. 

Second, most point pattern statistics are sensitive to edge effects where 

unobserved events outside the sample plot influence or interact with events within the 

sampled plot (Diggle 2003).  While some spatial indices have straightforward, 

mathematical corrections for edge effects, many do not or the simple corrections only can 

work on regularly shaped plots (e.g., Donnelly [1978] correction for the Clark-Evans 

statistic).  Weighting algorithms can be used that reduce the contribution of a point to the 

value of the spatial statistic, usually based on some function of the distance of the point to 

the edge relative to the scale of interest (Upton and Fingleton 1985, Diggle 2003).  

Another method to adjust for edge bias creates a buffer zone along the outer plot edges, 

effectively reducing the analyzed plot area (e.g., Woodall and Graham 2004).  Individuals 

within the buffer zone are used only for the calculations for points within the reduced, 

inner subplot, with the width of the buffers determining the greatest scale of interest 

(Williams et al. 2001).  As a result, buffers are generally inefficient when the scale of 

interest is large relative to the extent (Diggle 2003).  For example, if one wanted to 
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determine the spatial patterns of trees on scales ≤10 m in a 400 m2 square plot, buffers 

would require mapping trees in an additional 1,114 m2 around that plot. 

Many studies employ toroidal edge correction as a way to reduce edge effects.  

Toroidal edge correction essentially uses the entire plot itself as a buffer by using points 

on the opposite side of the plot to correct for edge effects on any particular side.  This 

process maps the plot into continuous space as a torus, or more simply as a 3 x 3 array of 

replicates of the sample plot point pattern (Upton and Fingleton 1985).  Not surprisingly, 

this technique has only been applied to square or rectangular plots.  However, Williams et 

al. (2001, 2003) showed that toroidal edge correction could be applied to circular plots 

through a “morphing” algorithm with minimal introduction of bias for tree canopy cover 

estimation and also suggested that it could be used for other spatial indices.  Williams et 

al. (2001, 2003) did not, however, investigate whether this technique would introduce 

bias in local, second-order spatial properties, such as those measured by the Clark-Evans 

statistic (CE) or the ( )dK̂  function. 

In most long-term forest inventories that track growth and yield, e.g., the U.S. 

Forest Service FIA plots (Tillman 2004), plots are circular and usually nested, with larger 

plots up to 0.05 - 0.2 ha for larger, overstory trees, 0.01 - 0.05 ha for saplings, and plots 

as small as 0.0004 ha for regeneration.  This design is used to maximize sampling 

efficiency; small trees occur in large numbers but do not contribute as much biomass or 

yield to a stand as larger trees.  Typically, mapped tree locations within plots have had 

little value for point pattern analyses.  Instead, plot averages for some variable were used 

to study patterns across a landscape or larger extent.  Even when overstory plots are large 

enough (> 0.1 ha), a nested design precludes investigation of pattern interactions between 
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the tree classes measured at different plot scales.  Often the size of the smaller nested plot 

will not contain enough individuals of the larger tree class to draw any statistically 

significant conclusions about the interaction between tree locations of the two classes.  

This situation has been unfortunate, as growth-and-yield plots constitute some of the 

oldest, most continuously monitored, spatially explicit datasets available. 

Williams’ et al. (2001, 2003) morphing algorithm could prove advantageous in 

applying spatial statistical methods to tree positions in relatively small, circular, and 

nested, forest inventory plots.  At the plot level, morphing could allow unbiased estimates 

of second-order spatial properties and, if one assumes a homogenous extent as often is 

done within each sampling stratum of a forest inventory, all second-order spatial tests 

could be summarized across numerous plots, thereby shifting inference to the 

experimental design and away from a stochastic model (Diggle 2003).  In addition, the 

use of multiple, smaller plots captures the average or range of conditions within a sample 

stratum more effectively than one large plot.  Granted, this multi-plot approach would 

reduce the maximum scale of inference since each individual plot is smaller; however, it 

could be argued that by using other plots in the stratum to toroidally wrap within the 

morphing algorithm, not the same plot itself, one could investigate at scales that approach 

the plot radius.  Similarly, at the subplot level, morphing could provide a means to 

increase the scale of smaller nested plots to the scale of the larger plot, again by either 

using the smaller nested plot itself or its conspecifics in the stratum to toroidally wrap.  

This approach is much easier than trying to identify the point pattern of each smaller, 

nested plot using a Markov, Matern or other point processes, and then simulate those 

processes over the larger plot (Williams et al. 2001).  Furthermore, this approach should 
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provide a better estimate of the true spatial pattern than the predetermined patterns often 

used for scaling within simulation/visualization programs (e.g., the Stand Visualization 

System [McGaughey 2004]).  However, it is unlikely that spatial relationships between 

points measured on different scales would be maintained without some type of 

“adjustment” to positions during the morphing procedure to account for interpoint 

attraction or repulsion. 

If the morphing technique is to be applied in the aforementioned manner, then the 

sensitivity of spatial metrics to the effects of morphing needs to be quantified.  This study 

investigated two metrics commonly used in spatial analysis of tree populations, the CE 

statistic (Clark and Evans 1954) and the univariate ( )dL̂  function (Besag 1977), a square-

root transformation of the ( )dK̂  function (Ripley 1976, 1977).  Two hypotheses were 

tested:  1) morphing as an edge correction technique does not bias estimates of the CE 

statistic or ( )dL̂  function as averaged across several plots; and 2) morphing used as 

scaling tool does not bias estimates of the CE statistic or the univariate ( )dL̂  function.  

These hypotheses were tested using multiple Monte-Carlo type simulation experiments, 

factoring both on known, simulated point distributions (i.e, clustered, random and regular 

patterns) and on a targeted sample size.  Comparisons were made with both population 

level estimates of these metrics and with estimates derived from equivalent controls (e.g., 

plots of twice the area on the original scale to compare with plots scaled up to twice their 

original size with the morphing algorithm).  Examples using actual forest inventory data 

also are presented. 
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2.3. BACKGROUND 

2.3.1. Morphing 

The morphing algorithm of Williams et al. (2001, 2003) remaps the trees within a 

circular Euclidean space C with the origin at the plot center and a radius of ρ (formally 

defined by ( ){ }22
1

2
111 :, ρ≤+= yxyxC ), to a square space D of equal area and a side length 

of ρπ0.5 (formally defined by ( ){ }5.0
2

5.0
222 5.0,5.0:, ρπρπ ≤≤= yxyxD ).  The equations to 

transform or “morph” the coordinates from C to D are (from Williams et al. 2001, 2003): 
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where I(a,b](c) is one for a < c ≤ b, zero otherwise, 
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where θ is in radians.  These transformations preserve the density of process across the 

two spaces (Williams et al. 2001, Appendix) and the membership of each quadrant by 

any given point (Williams et al. 2003). 
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After morphing the coordinates to space D, the now-square plot can be toroidal 

edge corrected with replicates of the same morphed plot, or potentially from other 

morphed plots drawn from the same point process.  The 3 x 3 array of morphed plots can 

then be “demorphed” back to a circle of radius 3ρ using the following system of 

equations (modified from Williams et al. [2001, 2003] to avoid undefined values of γ 

through division by 0): 
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with φ as the angular displacement of the morphed coordinates (x2, y2), 

γcos1 rx =  [2.7] 

and 

γsin1 ry = . [2.8] 
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The larger “demorphed” plot now can be trimmed to any size radius between ρ and 3ρ, 

and then used for edge corrections for any standard spatial analyses conducted on the 

original plot (Williams et al. 2003), or potentially as a scaling tool to simulate the original 

plot across a larger extent (this study). 

2.3.2. Spatial Metrics 

2.3.2.1. Clark-Evans Nearest Neighbor Index 

There are numerous metrics available to investigate spatial point pattern.  For this 

study, two metrics commonly used in the study of the spatial dynamics of plant 

populations were chosen.  The Clark-Evans nearest neighbor index (CE; Clark and Evans 

1954) relates the mean nearest neighbor distances in any spatial pattern (rA) to that mean 

distance (rE) expected under complete spatial randomness (csr).  It was calculated as: 
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where ri is the distance between tree i and its nearest neighbor, N is the total number of 

points in the pattern, and A is the area.  In this form, CE will be biased from edge effects 

as points near the perimeter of the plot having longer nearest neighbor distances than 

would be expected.  Donnelly (1978) provided a correction to rE that reduces this bias in 

compactly-shaped plots: 
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where P is the perimeter of the plot.  CE ranges from 0 for completely aggregated points 

to 1 for csr to 2.1491 for perfectly regular hexagonally distributed points (Clark and 
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Evans 1954, Kint et al. 2003).  Significances of departure of CE from csr are tested with 

a standard, normal variate defined as: 
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where λ is the density of the point pattern (Clark and Evans 1954).   

2.3.2.2. K(d) Function 

Unlike CE, which summarizes overall spatial pattern in a single statistic, the 

( )dK̂  function describes the spatial pattern as it relates to distance within the extent 

(Ripley 1976, 1977).  Basically, K(d) is the expected number of points within distance d 

of an event, relative to the overall density (λ) of the point process.  K(d) is estimated from 

the distances (dij) between all points in the extent (Moeur 1993, Diggle 2003): 
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for d > 0.  Like CE, ( )dK̂  is strongly biased by edge effects.  For point patterns that have 

an exclusively defined buffer, ( )dK̂  is modified to: 
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where N+ is the number of points in A and the surrounding buffer (i.e., dij’s are 

calculated between all points in A and only from the buffer points to those in A; Cressie 
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1993).  For areas without a buffer, Ripley (1976, as modified by Diggle 2003) suggested 

the following form: 
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where wij is the proportion of the circumference of a circle centered on point i and 

passing through point j that is inside A.  ( )dK̂  is typically calculated for evenly spaced d 

between 0 to one-half of the length shortest boundary or of the radius of A, at steps that 

are greater than the measurement error of the points (Freeman and Ford 2002). 

 Many studies use the square root transformation of ( )dK̂ , defined as (Besag 

1977): 

( ) ( ) ddKdL −=
π

ˆˆ  [2.15] 

instead of ( )dK̂ .  ( )dL̂  linearizes ( )dK̂ , stabilizes its variance and has an expected value 

of approximately zero at all d under csr.  Furthermore, ( )dL̂  is much easier to interpret 

than ( )dK̂ , with positive values indicating clustering in the point pattern and negative 

values indicating regularity (Moeur 1993, Freeman and Ford 2002).   

 Significance for ( )dK̂ , and subsequently ( )dL̂ , is estimated via Monte Carlo 

procedures as the sampling distribution for ( )dK̂  is analytically intractable for all but the 

homogeneous Poisson process (Goreaud and Pélissier 2000, Diggle 2003).  Confidence 

envelopes are generated by simulating several realizations (η) of a benchmark point 

process that conforms to the null hypothesis, e.g., a homogenous Poisson process to test 

for csr, and calculating ( )dK̂  for each realization.  These simulations are generally 
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conducted with the same intensity and lag distances, and across the same extent as the 

observed point pattern.  For a given α, local confidence envelopes are built from [ ]2αη  

and [ ]21 αη − , sorted at each d (Goreaud and Pélissier 2000).  Although many studies have 

set 11 −−= αη  (Kenkel 1988, Harrod et al. 1999, Antos and Parish 2002), Martens et al. 

(1997) suggest that these Monte Carlo confidence envelopes have low validity when 

η·α < 5.  

 Studies of replicated point patterns, such as in this one, require a modification to 

the normal calculation of ( )dK̂ .  Since ( )dK̂  is scaled by the estimated density λ̂ , and 

λ̂ would naturally vary across replicates of an underlying point process with the same λ, 

Diggle (2003) suggested that ( )dK̂  should not be calculated as a simple arithmetic 

average of the ( )dKi
ˆ ’s.  Instead, he suggested that 

( ) ( ) ∑∑
==

=
r

i
i

r

i
ii ndKndK

11

ˆˆ  [2.16] 

where r is the replicate and ( )dKi
ˆ  is calculated on each r with either [2.12], [2.13] or 

[2.14] from above.  The standard deviation is calculated as: 

( ) ( ) ( )[ ] ∑∑
==

−=
r

i
i

r

i
iidK ndKdKnsd

11

2 
ˆ

ˆˆ  [2.17] 

Standard errors and parameteric confidence intervals can then be calculated normally.  

Diggle (2003) explains that significance of ( )dK̂  for unknown point distributions can 

also be assessed nonparametrically by calculating a bootstrapped estimate of its sampling 

variance; this approach was not taken in this study since the properties of the underlying 

point population were known.  If Monte Carlo envelopes are required to determine a 
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departure of ( )dK̂  from csr, they should incorporate the variability in λ̂ as it varies 

across the replicates and, if replicate-level ( )dKi
ˆ  is also of interest, be corrected for 

experimentwise Type I error using the bonferroni adjustment to α (Kuehl 1994). 

2.4. METHODS 

2.4.1. Experiment I:  Edge Correction of Circular Plots 

The first two of the three simulation experiments were conducted to investigate 

the potential of the morphing algorithm as both an edge-correction and scaling tool on 

univariate data.  Williams et al. (2001) suggested that the morphing algorithm could be 

used to create a buffer of points for edge correction for attributes of the original plot; 

subsequently CE and ( )dL̂  could be calculated using equations [2.9] and [2.13], 

respectively.  Experiment I was designed to test the hypothesis that use of the morphing 

algorithm in this manner did not bias sample plot-level estimates of either the CE or the 

( )dL̂  function, either as compared to those calculated 1) from the entire population or 

extent (i.e., CEpopl and ( )dLpopl
ˆ ), or 2) using either the Donnelly [2.10] or Ripley [2.14] 

edge-correction techniques on the unmorphed sample plots.  For CE, one-way and paired 

t-tests were used to test these two intermediate hypotheses, respectively, at each point 

pattern and targeted sample size (Ntar) combination (see below).  For the ( )dL̂  function, 

the difference between ( )dLpopl
ˆ  and the weighted mean sample-plot ( )dL̂  [2.16] was 

plotted for each of the two edge-correction techniques as applied to the concurrent set of 

sample plots.  Distances at which the 95% confidence interval (as calculated using [2.17]) 

for this difference did not contain 0 indicated potential bias in either edge-correction 
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technique.  L-function comparisons were tested at scales up to one-half of the sample plot 

radius (0.5·rad).   

Classification errors for individual plots were also calculated to investigate 

differences between the edge-correction techniques in detection of clustering or regularity 

from the sample plots.  Ideally, classification of plots, either correctly or incorrectly, 

between the Donnelly and morphing edge-corrections for CE or between the Ripley and 

morphing edge-corrections for ( )dL̂ , should not differ; e.g., all plots from which the CE 

using Donnelly correction was significant should also be significant using the morphing 

correction, and visa versa.  In the best case, there should be no plots where one technique 

detected significance and the other did not; i.e., marginal detection rates would equal 

zero.  However, the marginal detection rates often vary from 0, but if there is no 

difference in detection the rates should be identical for both techniques.  The McNemar 

test (Zar 1999) was used to test for this homogeneous marginality between the different 

edge-correction methods for both CE and ( )dL̂ . 

2.4.2. Experiment II:  Scaling of Circular Plots 

Experiment II was designed to test the hypothesis that the morphing algorithm 

could be used to scale univariate point processes within the sample plot; i.e., estimates of 

average CE or ( )dL̂  as calculated from morphed plots scaled up from smaller plots 

should not differ significantly from 1) population level estimates or 2) those calculated 

from unmorphed, control plots of the same scale (2·rad; CONT).  There are at least three 

ways to approach scaling with plots from a forest inventory.  First, the same sample plot 

could be used for toroidal wrapping within the morphing algorithm.  Although 
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straightforward, this SAME approach would likely introduce bias into the CE and ( )dL̂  

statistics, manifested as inhibition at the scale near rad (Upton and Fingleton 1985).  

Therefore, most inferences about spatial pattern would still probably only be valid at 

scales <0.5·rad.  Another approach would use a random selection of 8 different sample 

plots within the same sampling stratum for toroidal wrapping (DIFF approach).  The 

DIFF approach assumes a homogenous, isotropic process across the entire stratum, i.e., 

all plots represent the same process, but this is the primary assumption when defining a 

sampling stratum.  Furthermore, this approach might reduce the amount of inhibition bias 

introduced into the pattern.  A third approach, common in many visualization systems, is 

to scale plots up using a predetermined point process, often random allocation, within the 

expansion area (i.e., the RAND approach).  Unfortunately, this technique ignores the 

spatial pattern of the original plot and may mute unique spatial characteristics, 

particularly if the predetermined process is quite different from the observed pattern.  All 

three approaches were tested using the same set of sample plots to scale plots to twice the 

original radius (2·rad).  The Donnelly [2.10] and the Ripley [2.14] corrections were used 

to calculate CE and ( )dL̂ , respectively, for both the control sample plots and the three 

scaling approaches. 

Analysis for Experiment II was similar to that for Experiment I.  One-way t-tests 

were used to test the difference between CEpopl and mean sample plot CE for the control 

and each of the three scaling options.  Multiple comparisons among the control and the 

three scaling options for mean CE were tested using a Tukey HSD test at a familywise 

α = 0.05.  For ( )dL̂ , 95% confidence intervals for the difference between ( )dLpopl
ˆ  and 

mean sample plot ( )dL̂  for each option were calculated for lag distances up to rad.  
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Differences in classification proportions were tested using the Cochran’s Q test, which is 

an extension of the McNemar test when the number of repeated-measures or categories in 

a dichtomous dataset is greater than 2 (Zar 1999).  Pairwise comparisons among the 

control and the three scaling approaches were tested using a nonparametric form of the 

Scheffé test (Marascuilo and McSweeney 1967, as cited in Zar 1999). 

2.4.3. Point Pattern Generation 

Simulations in Experiments I and II were conducted with three different point 

patterns—clustered, random, and regular, and with three different mean sample sizes 

(N)—25, 50, and 100.  This set of sample sizes covers much of the range found in plots 

of many forest inventories; plot sizes are generally increased if sample sizes in individual 

plots fall below 20-30 and generally decreased when much above 100. Point patterns 

were created as follows: 

1. Clustered:  This point pattern was generated using the Thomas process, which 

is a special case of the Neyman-Scott process (Baddeley and Turner 2004).  

“Parent” points of intensity βp were generated from a homogeneous Poisson 

process.  About each parent point, a Poisson distributed number (μ) of 

“offspring” points are independently placed with isotropic Gaussian 

displacements that have a standard deviation of σ from the parent point.  

Parent points are then subsequently deleted, leaving only offspring points as 

the realization of the process.  For this study, well-distributed, relatively 

strong clustering was desired, so parameters were set at λp = 0.1, μ = 11, and 

σ = 3.16.  To maintain a constant intensity (λ) across all simulated patterns, 

the offspring points were randomly thinned to λ = 1.0. 
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2. Random:  This point pattern was generated with a homogeneous Poisson point 

process of λ = 1.0. 

3. Regular:  This point pattern was generated with a Strauss hardcore inhibition 

process using the Metropolis-Hastings algorithm (Baddeley and Turner 2004).  

The Strauss process has several parameters that control the radii of total (i.e., 

hardcore) inhibition between points (rhard), the radii of some (i.e., softcore) 

inhibition between points (rsoft), and the strength of the softcore inhibition (γs), 

with γs = 0 effectively as hardcore inhibition and γs = 1 effectively as no 

inhibition between points closer rsoft, but farther apart than rhard (Isham 1984).  

In this study, relatively strong inhibition was desired, so rhard = 0.5, rsoft = 0.75, 

and γs = 0.75.  Spatial point “birth” and point “death” routines within the 

Metropolis-Hastings algorithm were turned off; this allowed the model to be 

conditioned on λ = 1.0, identical to the other two point patterns, and points to 

only be shifted in location iteratively in accordance with rhard, rsoft and γs 

(Baddeley and Turner 2004). 

These point patterns were simulated across a 125 x 125 extent, with the outer 12.5 ring 

serving as a buffer area, thus eliminating the need to toroidal wrap during sample plot 

selection.  Point maps and the population-level ( )dLpopl
ˆ  are shown in Figure 2.1.  The 

population-level Clark-Evans statistic for the clustered, random, and regular patterns 

were 0.872, 0.995, and 1.363, respectively.  For each pattern by size combination, 1,000  
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Figure 2.1. Point maps and the population-level ( )dLpopl
ˆ  with increasing lag distance (d) 

for the three simulated point patterns used in both simulation experiments.  Monte Carlo 

95% confidence envelopes for ( )dLpopl
ˆ  are shown by the light lines. 
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circular plots of rad 2.82, 3.98, 5.64 for N of 25, 50, and 100, respectively, and were then 

randomly located within the interior 100 x 100 area.  Data for Experiments I and II were 

collected concurrently from the same sample plots and across the three simulated point 

patterns.  All statistical tests and pattern generation was coded in R (R Development Core 

Team 2005) using both the splancs (Rowlingson et al. 2005) and spatstat (Baddeley et al. 

2004) packages.  The R code used for this analysis can be found in Appendix A. 

2.5. RESULTS & DISCUSSION 

2.5.1. Experiment I:  Edge Correction of Circular Plots 

Use of the Donnelly edge correction for estimating the Clark-Evans statistic 

(CEdon) provided a slightly better approximation of the population-level CE (CEpopl) than 

did the morphing algorithm (CEmor), but neither estimated CEpopl for most point pattern 

and sample size combinations adequately (Table 2.1).  Both edge-correction methods 

yielded significant overestimates of CEpopl, with the CEmor consistently and significantly 

greater than CEdon.  As expected, the absolute difference between CEdon or CEmor and 

CEpopl was least when the targeted sample size was greatest.  Likewise, the differences 

between CEdon and CEmor were reduced as sample size increased (Table 2.1), suggesting 

that the two edge-correction techniques may converge on CEpopl with higher sample sizes. 

At the sample plot level, both the Donnelly edge correction and the morphing 

algorithm performed poorly for aggregated point patterns, with significant clustering 

detected in only 1.1-8.0% and 0.4-5.0% for the Donnelly and morphing edge corrections, 

respectively (Table 2.2).  This result was not surprising; several authors have reported the 

shortcomings of CE in clustered stands (Kint et al. 2003).  For the random and regular  
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Table 2.2. Number of sample plots out of 1,000 that showed significant CEs or ( )dL̂  

values (at any lag distance) for the morphing and Donnelly or Ripley, respectively, edge-

corrections for each of the point pattern by target sample size (Ntar) combinations.  

Significant differences in classification between the two methods were tested with the 

McNemar test (M) for each pattern by Ntar combination.  ( )dL̂  incorrectly classified 

some clustered patterns as regular over at least one lag distance; the total number of plots 

for which this occurred is given in the parentheses.  During classification, significance 

values were Bonferroni-corrected; for ( )dL̂  these were obtained from the [ ]5η  and 

[ ]995,199η  ranked values from 200,000 Monte Carlo simulations of csr with mean sample 

size Ntar drawn from a random Poisson distribution. 

CE ( )dL̂  
Pattern Ntar 

Donnelly Morphed M Ripley Morphed M 
Clustered 25 11 4 4.0* 84 (2) 15 (0) 67.0** 

Clustered 50 31 9 18.4** 400 (2) 246 (4) 150.1** 
Clustered 100 80 50 17.5** 782 (6) 693 (5) 83.3** 
Random 25 0 0 0.0 0 0 0.0 
Random 50 0 0 0.0 0 0 0.0 
Random 100 0 0 0.0 0 0 0.0 
Regular 25 249 153 48.0** 0 0 0.0 
Regular 50 849 802 15.0** 998 903 93.0** 
Regular 100 999 998 0.0 1000 1000 0.0 
* p < 0.05 
** p < 0.01 
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point patterns, both approaches performed similarly.  McNemar tests of each pattern by 

sample size combination suggests that use of the Donnelly edge correction leads to higher 

detection rates of both significant clustered and regular patterns (Table 2.2); the overall 

odds ratio across all point pattern and sample size combinations was 2.95 (p < 0.001) and 

the McNemar statistic was 99.28 (p < 0.001). 

Results for the ( )dL̂  function were similar.  Neither the Ripley nor the morphing 

corrections yielded mean ( )dL̂  values equal to or at all distances equivalent to those 

observed in the population (Figure 2.2).  This effect was particularly pronounced for the 

clustered pattern where both corrections significantly underestimated ( )dLpopl
ˆ  across all 

distances for all sample sizes (Figure 2.2); this was somewhat expected since the 

clustered pattern showed a peak in ( )dLpopl
ˆ  beyond the scale of the plots (Figure 2.1).  

Nevertheless, the Ripley correction performed slightly better for this pattern as it better 

approximated ( )dLpopl
ˆ  than the morphing correction, regardless of sample size (Figure 

2.3).  The morphing algorithm also significantly overestimated ( )dLpopl
ˆ  for the regular 

pattern at smaller sample sizes; the Ripley correction did not.  For the regular pattern, 

both corrections did yield significant peaks in their mean ( )dL̂  that corresponded to 

approximately the same lag distances as the population; the morphing correction tended 

to significantly overestimate ( )dLpopl
ˆ  at this point (Figure 2.2). 

At the sample plot level, it was obvious that ( )dL̂  was more powerful than CE at 

detecting clustering or regularity (Table 2.2).  However, ( )dL̂  still did not detect 

differences from csr with sample sizes of 25, and it performed relatively poorly for the  
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Figure 2.2. Difference between population-level ( )dLpopl
ˆ  and mean sample plot ( )dL̂  

functions with increasing lag distances (d) and using the morphing and Ripley edge-

correction algorithms ([2.14] and [2.13], respectively), as calculated from 1,000 plots of 

targeted sample size (Ntar) for clustered, random, and regular point patterns.  The 

uncorrected ( )dL̂  function [2.12] is shown for comparative purposes.  The symbols at the 

bottom of each plot indicate over which range the uncorrected (filled circle), the 

morphing (open square), and Ripley (filled triangle) ( )dL̂  functions were not 

significantly different from ( )dLpopl
ˆ . 

Morphed
Ripley
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clustered point pattern with either the Ripley or the morphing corrections (Table 2.2).  

Larger sample sizes did increase detection and use of the Ripley correction detected 

significant departure from csr more readily (McNemar statistic = 399.12, p < 0.001), 

from 7-15% more plots depending on pattern and sample size. 

In summary, when used as an edge-correction technique as Williams et al (2003) 

suggested, the morphing algorithmn generally introduced some bias into the CE or ( )dL̂  

statistics, likely through the introduction of regularity into the edge-corrections.  For 

regular or random point patterns, this effect would probably be negligble for either 

classification of plots or in identifying the scale of pattern, but for clustered patterns it 

could be significant enough to reduce detection rates with many second-order spatial 

metrics (Figure 2.2).  Although the Donnelly and Ripley corrections did not adequately 

approximate the clustered population’s CE and ( )dL̂ , respectively, both corrections 

provided better estimates than the morphing algorithmn.  Cressie (1993) calculated 

several edge corrections of ( )dL̂  for the spatial analysis of longleaf pines (Pinus 

palustris).  Edge-corrected estimates of ( )dL̂  using morphing algorithmn would likely 

fall somewhere between those based on toroidal distances and those with a guard area for 

most point patterns (Cressie 1993, Figure 8.15).  This statement would likely apply to CE 

estimates as well.  Based on these results, there probably is no reason to select the 

morphing algorithmn over either the Donnelly or Ripley techniques for edge correction of 

CE or ( )dL̂  on circular sample plots. 
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2.5.2. Experiment II:  Scaling of Circular Plots 

Scaling small circular sample plots upwards to larger-sized plots using the 

morphing algorithmn was the focus of Experiment II.  Morphing using either the same 

(SAME) or different (DIFF) sample plots did not provide a good approximation of 

CEpopl.  However, neither did the random approach (RAND) nor even the large control 

plots approximate CEpopl adequately.  For example, across the nine point pattern by 

targeted sample size combinations, one-way t-tests of no difference between CEpopl and 

mean sample plot CE were nonsignificant (p > 0.05) only 4 times—once for CONT, once 

for DIFF and twice for RAND (Table 2.3).  However, assuming that the CONT estimate 

would be the best approximation for CEpopl one could expect within an analysis from 

sample plots, the mean CEs of DIFF and SAME did not differ greatly from the mean CE 

of CONT for most point pattern by sample size combinations (Table 2.3).  The most 

notable exception to this trend was for regular point patterns, where the mean CEs for the 

CONT were significantly greater.  As expected, the RAND approach eliminated any 

significant pattern that could be detected with CE (Table 2.3). 

Classification rates for the control and three scaling options were significantly 

different for all patterns by sample size combinations (Table 2.4).  All approaches except 

RAND, generally classified plots correctly for the random and regular.  For clustered 

patterns, CE did not detect clustering well in sample plots regardless of the approach 

even with sample size approaching 200 points.  Furthermore, the regularity that the 

SAME approach incorporates into the edge corrections caused a small number of random 

patterns to be classified as regular.  Overall, the CONT and DIFF generally had the same 

rates of correct classification, followed by SAME and finally RAND (Table 2.4). 
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Table 2.4. Number of sample plots out of 1,000 that showed significant CEs or ( )dL̂ ’s 

(at any lag distance) for the control and the three scaling options listed in the text for each 

of the point pattern by target sample size (Ntar) combinations.  Both CE and ( )dL̂  

incorrectly classified some clustered patterns as regular, or regular as clustered, over at 

least one lag distance; the total number of plots for which this occurred is given in the 

parentheses.  During classification, significance values were Bonferroni-corrected; for 

( )dL̂  these were obtained from the [ ]5η  and [ ]995,199η  ranked values from 200,000 Monte 

Carlo simulations of csr with mean sample size Ntar drawn from a random Poisson 

distribution.  Differences in classification proportions among all four options were tested 

with the Cochran’s Q test (Q) for each pattern by Ntar combination.  Letters within the 

same row indicate no significant difference in proportions as tested using pairwise 

comparison tests at a familywise α=0.05. 

Number of Significant Plots Pattern Ntar 
Control Same Different Random 

Q* 

 ---------------------------------------------------- CE----------------------------------------

Clustered 100  55b (0)  135c (3)  41b (0)  3a (0) 181.4 
Clustered 200  296bc (0)  315c (1)  254b (0)  0a (0) 413.7 
Clustered 400  745c (0)  559b (0)  720c (0)  2a (0) 1377.4 
Random 100  0a  30b  1a  0a 85.3 
Random 200  1a  30b  0a  0a 87.1 
Random 400  0a  29b  0a  0a 87.0 
Regular 100  1000c (0)  840b (0)  955c (0)  9a (0) 2490.5 
Regular 200  1000b (0)  998b (0)  1000b (0)  36a (0) 2886.0 
Regular 400  1000b (0)  1000b (0)  1000b (0)  192a (0) 2424.0 

 --------------------------------------------------- ( )dL̂ --------------------------------------

Clustered 100  755d (0)  308b (83)  419c (0)  49a (9) 1137.8 
Clustered 200  989c (0)  725b (161)  971c (2)  241a (20) 1697.0 
Clustered 400  1000b (3)  967b (193)  1000b (2)  613a (7) 1071.2 
Random 100  0a  121b  3a  5a 318.0 
Random 200  2a  137b  2a  3a 375.4 
Random 400  1a  136c  3a  25a 298.8 
Regular 100  1000b (0)  949b (0)  990b (0)  3a (1) 2822.3 
Regular 200  1000b (0)  1000b (0)  1000b (0)  24a (2) 2928.0 
Regular 400  1000b (0)  1000b (0)  1000b (0)  120a (9) 2610.0 

* Q ~ χ0.05,3 = 7.815 
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Mean sample plot ( )dL̂  calculated with the control or any scaling approach 

significantly underestimated ( )dLpopl
ˆ  across most distances for the aggregated point 

pattern, regardless of the target sample size (Figure 2.3).  Interestingly, peaks in mean 

( )dL̂  for the CONT and the SAME and DIFF approaches all occurred between lag 

distances of 1.5 and 2.0 regardless of sample size; ( )dL̂  calculated using the SAME 

approach usually peaked at the shortest lag distances within this range with DIFF and 

CONT peaking at successively longer distances.  For the random point patterns, ( )dL̂  of 

both CONT and DIFF was not significantly different from ( )dLpopl
ˆ  across all lag 

distances and for all target sample sizes; SAME and RAND significantly underestimated 

and overestimated ( )dLpopl
ˆ , respectively, across all lag distances (Figure 2.3).  For the 

SAME approach, in particular, this was likely due to the same regularity introduced into 

the pattern that was also seen in the CE results.  Woodall and Graham (2004), in a similar 

study that studied spatial relationships across trimmed, torodial wrapped, FIA subplots, 

also reported misleading ( )dK̂  results.  Diggle (2003) notes that a common weakness 

with normal toroidal wrapping is that it incorporates regularity at scales approaching the 

dimensions of a plot and aggregation for points near the edge of the plot.  For the regular 

point patterns, ( )dL̂  using any of the three scaling approaches significantly overestimated 

( )dLpopl
ˆ  across the scales of inhibition found in the population (d = 0.3 – 0.9).  Beyond 

this range, ( )dL̂  calculated using either the SAME or DIFF approaches was not 

significantly different from ( )dLpopl
ˆ .  The CONT was never different from ( )dLpopl

ˆ  for 

any lag distance or sample size (Figure 2.3). 
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Figure 2.3. Difference between population-level ( )dLpopl
ˆ  and mean sample plot ( )dL̂  

functions with increasing lag distance (d) for the control and the three scaling options 

listed in the text, as calculated from 1,000 plots of targeted sample size N for clustered, 

random, and regular point patterns.  The Ripley edge correction [3.13] was used for all 

plots.  The symbols at the bottom of each plot indicate over which range the control 

(filled circle), morphing with same (open square), morphing with different (filled triangle), 

and random (open circle) ( )dL̂  functions were not significantly different from ( )dLpopl
ˆ . 
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Classification rates of plots as showing clustering or regularity using ( )dL̂  

differed significantly by approach for all pattern by target sample size combinations 

(Table 2.4).  Like for CE, ( )dL̂  using the RAND approach generally could not detect 

clustering or regularity unless the target sample size was 200-400, and even then the 

classification rate was low.  The SAME approach worked adequately, but again the 

regularity introduced during the edge correction caused several sample plots in the 

clustered and random patterns to be classified as regular.  The ( )dL̂  with DIFF approach 

correctly identified aggregation or regularity in the point patterns, and was not 

significantly different (p > 0.05) from the CONT for 8 of the 9 pattern by sample size 

combinations (Table 2.4). 

Although the morphing algorithm was not a panacea for scaling point processes, it 

did appear to offer a large improvement over use of random allocation of points during 

plot expansion (the RAND approach).  Even with regularity “injected” into the point 

pattern by morphing, our results suggest that many spatial patterns can still be detected.  

Furthermore, additional improvements can be made by using multiple stem-mapped plots 

within each sampling stratum to bootstrap spatial metric estimates and get better 

estimates of variability across plots.  However, it cannot be overlooked that the 

significance of clustered spatial patterns are muted and sometimes lost after using the 

morphing algorithm (Figure 2.3, Table 2.4). 

2.6. APPLICATION 

Many growth and yield studies that were initiated by the USDA Forest Service in 

the 1950s and 1960s were not designed to examine spatial relationships among trees 
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within a sample plot. Any spatial data collected was generally an afterthought and 

intended only to relocate trees in later surveys (Woodall and Graham 2004).  As such, 

many of these studies use nested plots or clustered plots to increase sampling efficiency.  

The morphing algorithm is a tool that can help link data among nested sample plots of 

various scales, particularly for visualization purposes and for preliminary investigation of 

spatial patterns among trees.  This capacity can be very important when comparing long-

term patterns in stand structural development among stands subjected to different 

silvicultural treatments, particularly among treatments resulting in vastly different stand 

ages and tree sizes.  For example, structural development of an uneven-aged, selection 

system would be driven by larger trees that are usually sampled at a much broader scale 

than the trees driving the structural development within a young, even-aged, shelterwood 

system.  These differences would persist for an extended period of time, often 20 years or 

more, making spatial comparisons awkward or difficult during this time span. 

Therefore, I tested the utility of the morphing algorithm to scale up nested sample 

plot data from a long-term forest inventory.  Data from a USDA Forest Service long-term 

silviculture study at the Penobscot Experimental Forest (PEF) near Bradley, Maine (44° 

52’ N, 68° 38’ W) were used.  The PEF is predominantly an uneven-aged forest with 

stands dominated by eastern hemlock (Tsuga canadensis (L.) Carr.), balsam fir (Abies 

balsamea (L.) Mill.), eastern white pine (Pinus strobus L.), red maple (Acer rubrum L.), 

and paper birch (Betula papyrifera Marsh.).  The long-term study is comparing the 

effects of even-aged and uneven-aged silvicultural and exploitative practices on the stand 

growth and structure.  Further details about this study can be found in Sendak et al. 

(2003), Brissette (1996) or Chapter 4. 
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The locations of 7,883 trees within five plots in each of 10 different stands were 

stem-mapped using a compass, and a Haglöf DME (Haglöf 2003) or metal tape.  Stands 

included examples of commercial clearcutting (2 compartments), five-year, single-tree 

selection (2), fixed-diameter limit cutting (2), 3-stage shelterwood (1), 3-staged 

shelterwood with precommercial thinning (1), and an unharvested control (2), one of 

which had extensive spruce budworm (Choristoneura fumiferana (Clemens)) induced 

mortality in the early 1980s.  The USFS study used a nested, circular plot design with all 

trees greater than 11.4 cm (4.5 in) measured on 0.081 ha (0.20 ac) plots and all trees 

greater than 1.3 cm (0.5 in) measured on 0.020 ha (0.05 ac) subplots.  Sample sizes were 

35.5 ± 18.1 (mean ± standard deviation; range = 4 – 77) for the “large tree” plots and 

122.2 ± 104.8 (range = 0 – 475) for the “small tree” subplots.  Five examples of these 

plots are shown in Figure 2.4; maps of all 50 plots are found in Appendix B. 

Expansion of the small tree subplots has been problematic when trying to describe 

and simulate structure across the large tree plots.  Often small-scale regularity or 

clustering is lost when predetermined patterns are used to expand the nested plots.  

Therefore, the morphing algorithm using the DIFF approach, i.e., morphing with plots 

from the same stand was used to scale these subplots.  Unlike in the above simulation 

study, the underlying population parameters were not known.  Therefore, scaling for each 

subplot was simulated with the morphing algorithm 100 times and bootstraped estimates 

of mean CE and weighted mean ( )dL̂  (from [2.15]) were calculated.  These estimates 

were compared to the original CE and ( )dL̂  for the unscaled subplots.  Subplots with 
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 Before After 

A. 

  

B. 

  
 

 

Figure 2.4. One example of a stem-mapped plot from the A) commercial clearcut, B) 

fixed diameter limit, C) 5-year selection, D) 3-stage shelterwood with spacing, and E) 

unharvested control.  Maps on the left use only the measurements collected from the 

field; those on the right are one realization (out of 100 calculated per plot) of the 

morphing algorithm using different plots in the same sampling compartment to torodial 

wrap with.  The area of point symbols is proportional to the natural log of the diameter at 

breast height (DBH) of the tree represented; softwood species are represented by circles 

and hardwood species by squares.  Only trees <11.4 cm DBH were used to calculate the 

Clark-Evans (CE) statistic associated with each map.  These trees are represented with 

black and the larger trees (> 11.4 cm DBH) represented in grey.
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Figure 2.4. Continued. 
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less than 5 trees were excluded from the analysis, all of which were from one of the 

unharvested control stands. 

Nearly all subplots showed evidence of clustering at the original scale.  

Specifically, the Clark-Evans statistics for the subplots (CEori) ranged from 0.438 to 

1.115, with a mean of 0.766 (Figure 2.5).  Many of the most extremely clustered subplots 

also had low numbers (< 20) of small trees, often confined to one localized area within 

the plot.  Much of the clustering could be attributed to hardwood stump sprouts; these 

were especially prominent in clearcut and fixed diameter limit treatments (Figures 2.4a 

and 2.4b).  Subplots approached a random distribution of stems only in stands with high 

densities of small trees (>15,000 stems/ha) that were well into the stem-exclusion phase 

of stand development (Oliver and Larson 1996, Figure 2.4e). 

The use of morphing to scale these subplots had mixed results.  For example, 

results from a paired t-test showed that CEori was not significantly different from the 

CEsca calculated from the scaled subplot (t = 0.777, p = 0.442).  However, a plot of CEori 

versus CEsca (Figure 2.5) suggests that there is some bias in the procedure when 

comparing these estimates.  This bias occurs because of the DIFF approach within the 

morphing algorithm; extreme CEs from subplots within a stratum are “muted” as the 

simulated plot approaches the average conditions as observed across the entire stand or 

stratum.  An example is shown by Figure 2.4b, where the subplot had a low density and 

was highly clustered relative to other subplots within that stand.  A linear regression of 

stand-average CEori on CEsca confirmed this explanation and the relationship approached 

a 1:1 ratio ( orisca CECE 897.0082.0 += , 891.02 =adjR , F= 361). 
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Figure 2.5. Relationship between the Clark-Evans statistic of the unscaled, 0.020 ha 

subplot (CEori), and the subplot as scaled to the 0.081 ha plot using the morphing 

algorithmn (CEsca).  The 1:1 line is shown by the solid black diagonal line.  The 

regression (dotted line) excludes plots from one control stand since all 5 plots in that 

stand had fewer than 5 trees within each subplot and 2 of the 5 did not have defined 

CEori’s.  Estimates from the three other plots are shown as circles. 
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The ( )dLsca
ˆ  after scaling consistently overestimated ( )dLori

ˆ  calculated from the 

original unscaled plot (Figure 2.6).  Most plots showed smoothed, less erratic changes 

in ( )dLsca
ˆ  as it varied by lag distance as compared to ( )dLori

ˆ  and many ( )dLsca
ˆ  

appeared to peak at distances of 3.0 – 5.0 m whereas there was no consistent “peaking” 

seen in ( )dLori
ˆ .  This pattern may again be a result of the muting of extreme plots by the 

DIFF approach and/or an artifical increase in sample size from the scaling itself.  

Differences between ( )dLsca
ˆ  and ( )dLori

ˆ  were not different for lag distances below ~2.5 

m suggesting that the morphing algorithm using the DIFF approach was unbiased over 

this range. 

2.7. CONCLUSIONS 

In the original work on the morphing algorithm, Williams et al. (2001) mathematically 

showed that the morphing algorithm was an unbiased technique for edge corrections only 

for stationary Poisson point patterns.  While these patterns do occur in nature, I tested 

whether morphing could be extended to the clustered or regular distributions of trees 

commonly observed in unmanaged and managed stands.  Results from this study suggest 

that morphing should not be preferred over weighting techniques based on torodial 

distances, like the Ripley correction for ( )dK̂ , as an edge-correction technique for point-

based spatial metrics unless the sample size is relatively large or the population is known 

not to be highly clustered (Table 2.2, Figure 2.2).  However, as Williams et al. (2001, 

2003) show, the morphing algorithm is adequate to approximate structural metrics where 

unmeasured trees outside a plot contribute to the overall value of the statistic for that plot. 
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Figure 2.6. Mean difference between ( )dLsca
ˆ  and ( )dLori

ˆ  versus lag distance (d) in m.  

( )dLsca
ˆ  was calculated after morphing from the 0.020 ha subplot to the same scale as the 

0.081 ha plot; ( )dLori
ˆ  was calculated before morphing to the subplot.  Dotted lines 

indicate ±2 standard errors. 
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As a scaling tool, morphing performed better, particularly if coupled with the use 

of different plots or subplots within the same stratum or stand for torodial wrapping 

within the algorithm (i.e., the DIFF approach).  This approach performed significantly 

better than random allocation of tree stems during scaling, and approached larger, 

unscaled control plots in detection of clustering or regularity with either CE or ( )dL̂ .  

However, as was shown during the application the DIFF approach to actual stands, 

information from individual, extreme plots may be lost during scaling, as the scaled plots 

will approach the average conditions observed across the entire stand or stratum. 

Nevertheless, morphing can be a valuable tool that extends spatial analyses to 

smaller, circular plots that are common in forest inventory systems.  Morphing can be 

used in several ways depending on the goals of study.  If the scope of interest in a study is 

the plot, nested subplots should probably be scaled through morphing with themselves 

(i.e., the SAME approach) in order to preserve information on extreme plots and maintain 

the variability across plots.  However, this approach can introduce regularity into the 

observed patterns (Tables 2.3 and 2.4, Figure 2.3) and interpretations would need to be 

adjusted accordingly.  If the scope of interest is at the stand level, as is common in most 

forest inventory designs, nested subplots should be scaled with the DIFF approach and 

means and variances for all spatial metrics of interest should be approximated using 

bootstrapping or Monte Carlo methods (Diggle 2003).  Ideally, the number of subplots 

should be large enough to assure that multiple realizations of the same pattern are not 

observed during the morphing procedure.  If this is not the case, and the spatial data are 

isotropic (i.e., no directional trends), the circular subplots could be randomly rotated 
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when used for torodial wrapping.  This approach will reduce the possibility that the same 

“side” of a subplot is used during the DIFF approach. 

Lastly, morphing is not appropriate if the spatial arrangement among trees 

measured at different scales must be critically maintained during scaling of subplots.  In 

this case, the only option available is the spatial analysis of tree locations shared among 

the plots and all nested subplots.  Results from these analyses can then be used to 

simulate the subplot data across the entire plot, adjusting subplot positions to maintain 

proper spatial arrangement among tree types.  This approach would be quite daunting, 

both because it is uncommon in these inventories to have large enough sample sizes of 

each tree type of interest to accurately determine spatial relationships among all types, 

and because it is computationally demanding as the number of types and plots increase. 
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Chapter 3 

SPATIAL RECONSTRUCTION AND STRUCTURAL DYNAMICS OF 

ACADIAN MIXEDWOOD STANDS TREATED WITH VARIOUS 

SILVICULTURAL AND CUTTING METHODS 

3.1. ABSTRACT 

Using current and past inventory data from 10,225 stem-mapped trees, allometric 

relationships and a morphing algorithm, spatial reconstruction models were developed to 

analyze structural changes from 1974-2002 within 50 nested inventory plots across ten 

compartments of a long-term silvicultural experiment at the Penobscot Experimental 

Forest in east-central Maine.  Differences in spatial pattern, species mingling, height 

differentiation, and relative stand complexity index (rSCI) were compared among five 

treatments:  commercial clearcutting, fixed diameter-limit harvesting, 5-year selection 

system, 3-stage shelterwood (both with and without precommercial thinning), and an 

unharvested natural area.  Regardless of treatment, regeneration events, whether induced 

through natural stand breakup or by harvesting, increased aggregation in spatial pattern 

and reduced species mingling.  This pattern was heightened in the commercial clearcut 

and fixed diameter-limit harvest where hardwood densities were much higher.  Regular 

spatial patterns were rare, occurring only in trees >11.4 cm diameter and within the two 

most recent inventories of a precommercially thinned shelterwood.  Both differences 

among height differentiation values for individual trees and compartment-level average 

rSCI were generally highest in the natural areas and 5-year selection compartments, 

intermediate in commercial clearcut and fixed diameter-limit compartments, and lowest 

in 3-stage shelterwood compartments.  After a short adjustment period, precommercial 
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thinning in a shelterwood compartment generally increased mingling, height differtiation, 

and rSCI.  Results suggest that the natural areas represent two divergent, yet common, 

pathways of structural development in northeastern forests, and that uneven-aged 

management more closely resembles these dynamics than either shelterwood, commercial 

clearcut or fixed diameter-limit harvests. 

3.2. INTRODUCTION 

Forest management, through silvicultural intervention, has profound effects on 

stand structure and ecosystem function (Smith et al. 1997, Pommerening 2002, Kint et al. 

2003).  Obviously, silvicultural treatment can increase or decrease species diversity, 

change spatial pattern among stems or species, and/or change the size distribution of trees 

within the stand (Buongiorno et al. 1994, Solomon and Gove 1999, Sendak et al. 2003, 

Montes et al. 2005).  For example, some traditional approaches to even-aged regeneration 

methods (i.e., silvicultural clearcut, uniform shelterwood, and seed-tree harvests) that do 

not retain legacy structures homogenize stand structure and, when applied broadly in 

some ecosystems, reduce landscape-level biodiversity over time (Seymour and Hunter 

1999, O’Hara 2001, Lindenmayer and Franklin 2002).  Intermediate treatments used 

within these same even-aged silvicultural systems may increase, but more likely reduce 

structural diversity by removing undesirable species and redistributing growing space 

more equally among residual stems (Seymour and Hunter 1999, Homyack et al. 2004).  

Uneven-aged systems are thought to retain high amounts of structural diversity, but in 

fact, may lead to structures as artificial as those created with even-aged methods (O’Hara 

1996, Seymour and Kenefic 1998, Schütz 1999), particularly if the natural disturbance 

regime of the ecosystem is driven by stand-replacing events and/or if the selection system 
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does not explicitly maintain snag and downed woody material components.  As a result, 

reducing uniformity in the application of silvicultural systems, either even- or uneven-

aged, through retention of key stand structural elements is a significant paradigm shift in 

federal land management throughout much of the United States (Zenner 2004, Seymour 

et al., in press), and is one of the key tenets of the emerging subdiscipline of ecological or 

disturbance-based silviculture (Seymour and Hunter 1999).  Maintainence and creation of 

structural complexity to protect ecosystem function and biodiversity increasingly 

dominates much of our silvicultural thinking (Schülz 1999, O’Hara 2001, Franklin et al. 

2002, Palik et al. 2002, Zenner 2004, Frelich et al. 2005). 

Traditionally, effects of silviculture on stand structure have been quantified by 

changes in species composition, basal area, stand density, and/or tree diameter 

distributions.  It is now recognized that these variables, while important, do not 

adequately describe structural complexity, which explicitly depends upon the spatial 

pattern or position of tree stems, the mingling or intermixing of tree species, and the size 

differentiation among neighbors (Pommerening 2002, Kint et al. 2003, Zenner 2004).  

For example, Gadow and Hui (1999) give examples of theoretical stands that have 

identical basal areas, densities, and diameter distribution, but differ by spatial 

arrangement.  These stands have vastly different structures, which both affect the 

inference on how each stand formed and what silvicultural options may exist for future 

management of each stand.  

The spatial pattern of tree positions has been widely studied, most often in late-

successional and old-growth stands.  Spatial pattern influences both light regimes and 

regeneration patterns (Ward et al. 1996, Grassi et al. 2003) and is directly tied to plant 
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community dynamics and succession (Watt 1947).  Early in stand development, 

regeneration processes commonly lead to aggregation of individuals in the stand at 

relatively short spatial scales either through the regenerative mechanism itself (e.g., 

vegetative reproduction), the disturbance agent, and/or environmental heterogenity 

(Phillips and MacMahon 1981, Skarpe 1991, Taylor and Halpern 1991, Mast and Veblen 

1999).  As stands age and individual tree sizes increase, the spatial distribution at fine 

spatial scales tends towards random and slightly regular distributions through density-

dependent mortality due to competition between conspecifics (Greig-Smith and 

Chadwick 1965, Kenkel 1988, Mast and Veblen 1999).  As stands enter understory 

reinitiation and progress into old growth development stages (Oliver and Larson 1996), 

overall spatial pattern across broader scales may again become clustered as regeneration 

processes in canopy gaps increase (Armesto et al. 1986, North et al. 2004), but spatial 

pattern among the original cohort at short spatial scales will usually remain random or 

slightly regular as density-independent mortality increases (Szwagrzyk and Czerwczak 

1993), unless disturbance agents act in a spatially aggregated way (Fúle and Covington 

1998).  Interestingly, strongly regular patterns have been rarely observed in naturally 

regenerated stands except when density-dependent competition is extremely high and/or 

canopy disturbances are absent for an extended period of time (Phillips and MacMahon 

1981, Kenkel 1988, Ward et al. 1996), and they usually are detected only at shorter scales 

that are indicative of the crown radius of the larger individuals (Pielou 1962, North et al. 

2004, Koukoulas and Blackburn 2005, Motta and Edouard 2005). 

Spatially explicit analysis of mingling during forest development is much less 

common, generally confined to identifying scales at which species pairs are attracted or 
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repulsed/segregated by one another (e.g.., bivariate K12(d) functions and the segregation 

index S [Pielou 1977]).  Nevertheless, these bivariate relationships can be an important 

clue to processes that are driving spatial pattern.  For example, Peterson and Squiers 

(1995) reported slightly significant repulsion between overstory aspen and understory 

eastern white pine, suggesting that clonal tendencies of aspen could competitively inhibit 

understory establishment of white pine.  Although powerful, bivariate tests become much 

less useful in species-rich stands where the number of species pairs become exceedingly 

large and the stem densities decline.  Indices that integrate mingling across the entire 

pattern—like DM (von Gadow and Hui 1999)—are better suited to quantifying structural 

development in these cases (Kint et al. 2003).  One would expect changes in species 

mingling in unmanaged, even-aged communities to be largely controlled by the 

heterogeneity of site conditions.  Competition among individuals on homogeneous sites 

would generally lead to relatively few species dominating the stand throughout stem-

exclusion; therefore, mingling levels would decrease as species richness decreased.  

Conversely, competition among individuals on heterogeneous sites would generally 

maintain higher species diversity and higher mingling through stem-exclusion, although 

this would depend on reproduction patterns and the grain of the heterogeneity.  During 

understory-reinitiation and old growth development stages, species mingling should 

increase as more species become established (Oliver and Larson 1996), although the 

pattern and grain of canopy disturbances may blur this trend. 

Stand development theory (Oliver and Larson 1996, Franklin et al. 2002) suggest 

that size differentiation should be realitively low from stand initiation through the end of 

competitive exclusion of the overstory, and generally increase after this point.  In a 
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spatially explicit context, however, differentiation indices like TH (von Gadow and Hui 

1999) might not show a continuous increase as a stand progressed into old growth 

development stages; essentially they would be maximum when the size distribution of the 

stand was roughly bimodal, or when an understory stratum was well developed.  

However, the point at which a differentiation index peaks during development would 

depend on several factors including: 1) the size variable used—height growth peaks 

sooner than diameter growth, therefore differentiation should peak sooner if calculated 

with height; 2) the grain of density-independent mortality events—death of very large 

individuals would allow large patches of similar-sized trees to regenerate; and 3) 

differences in growth characteristics between the older and younger cohorts—for 

example, mountain ash forests of Australia often lack tolerant species that can develop 

into any significant canopy to replace the ash and, therefore maintain a bimodal 

distribution late into development (Franklin et al. 2004). 

While there have been numerous studies describing spatial pattern in forests, 

relatively few have tracked changes in pattern over time or accessed the effect of 

different silvicultural and harvesting methods on spatial indices.  Some studies have 

relied on temporary sample plots that cover a chronosequence or several stages of stand 

development (Franklin et al. 2002, Grassi et al. 2003, Zenner 2004), but these approaches 

often ignore individual stand histories (Montes et al. 2005).  Many studies have 

reconstructed spatial pattern by stem-mapping of both live and dead stems and using 

dendrochronological techniques to date mortality events (Harrod et al. 1999, Mast and 

Veblen 1999, Motta and Edouard 2005).  Inference in these studies, however, is often 

limited to the largest size classes, since smaller size classes have decayed and are not 
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represented in stem reconstructions.  Repeat measurements on permanent plots are ideal, 

particularly if measurements are often enough to document silvicultural entries or natural 

disturbance events.  These datasets are exceedingly rare, particularly at the larger scales 

(≥ 0.5 ha) used in most spatial analyses (e.g., Peterson and Squiers 1995, Ward et al. 1996). 

This study focuses on the structural development of mixed conifer stands in the 

Acadian ecoregion of North America.  Through stem-mapping and modeling with a 

morphing algorithm (Chapter 3), spatial-explicit structure for approximately 30 years was 

reconstructed on 50 inventory plots within a long-term silviculture experiment in the 

Penobscot Experimental Forest in Bradley, Maine.  The primary objective was to describe 

differences in structural development over time in management compartments previously 

treated by commercial clearcutting and fixed-diameter-limit harvest, 3-stage shelterwood 

and 5-year selection regeneration methods, and an untreated natural area.  A secondary 

objective was to test the adequacy of the stand complexity index (SCI; Zenner and Hibbs 

2000) which integrates spatial pattern and size differentiaion.  I hypothesized that: 

1) Spatial pattern after any harvest treatment would generally be more aggregated 

for both small and large individuals than in the unmanaged compartments.  

However, without further disturbance, pattern in any compartment should become 

more regular over time. 

2) Species mingling, as measured by DM, should be higher in unmanaged stands and 

stands with uneven-aged structures (selection) than even-aged management 

(shelterwood) or exploitative harvesting (commercial clearcut, diameter-limit). 

3) Size differentiation, as measured by TH, should be higher in unmanaged and 

uneven-aged stands than in either even-aged stands or stands with exploitative 

harvesting. 
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4) Structural complexity, as measured with SCI, will be highest in unmanaged and 

uneven-aged stands, lowest under even-aged management, and intermediate with 

exploitative harvesting. 

3.3. METHODS 

3.3.1. Study Area 

This study took place on the Penobscot Experimental Forest (PEF) located near 

the town of Bradley, Maine (44° 49’ 30” N, 68° 38’ 00” W), and managed conjointly by 

the University of Maine and the USDA Forest Service—Northeastern Forest Experiment 

Station.  The PEF lies in the Acadian Forest, an ecotone between the boreal forest of 

Canada and northern hardwood forests of southern New England (Brissette 1996).  

Climate is cool and humid with average temperatures ranging from –7.7 ºC in January to 

20.0 ºC in July, and precipitation averaging 106 cm, approximately half of which falls as 

snow (Brissette 1996, Sendak et al. 2003).  Soil types are derived from glacial till and 

ranging from well-drained loams and sandy loams on glacial till ridges to poorly and very 

poorly drained loams and silt loams in flat areas between the ridges.  Soils are typically 

quite fine-grained and extremely variable within a site, as till ridges, flats and streams fall 

often fall within close proximity of one another (Brissette 1996). 

Forest types within the PEF are mixedwoods, but usually dominated by Acadian 

Region softwoods (Sendak et al 2003).  These include red (Picea rubens Sarg.), white (P. 

glauca (Moench) Voss) and black spruce (P. mariana (Mill.) B.S.P.), balsam fir (Abies 

balsamea (L.) Mill.), eastern white pine (Pinus strobus L.), eastern hemlock (Tsuga 

canadensis (L.) Carr.), and northern white cedar (Thuja occidentalis L.).  Red pine (Pinus 

resinosa Ait.) and tamarack (Larix laricina (Du Roi) K. Koch) occur less frequently, 
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usually in stands that experienced a fire or very severe canopy disturbance.  Several 

hardwoods are close associates in these cover types, often increasing in abundance after 

exploitative harvesting (Kenefic et al. 2005a).  These include red maple (Acer rubrum 

L.), paper (Betula papyrifera Marsh.) and gray birch (B. populifolia Marsh.), and quaking 

(Populus tremuloides Michx.) and bigtooth aspen (P. grandidentata Michx.).  Sugar 

maple (Acer saccharum Marsh.), yellow birch (Betula alleghaniensis Britt.), American 

beech (Fagus grandifolia Ehrh.), northern red oak (Quercus rubra L.), white ash 

(Fraxinus americana L.), black cherry (Prunus serotina Ehrh.), and basswood (Tilia 

americana L.) are infrequent to rare associates, particularly on higher quality sites, within 

the PEF. 

Typically, natural stand structures in this region are irregularly uneven-aged 

resulting from partial canopy disturbances such as senescence, wind, ice storms, 

pathogens and insect herbivory.  Disturbance frequencies average 0.7-1.3% per year 

(Runkle 1982, Seymour et al. 2002).  Large-scale, stand-replacing disturbances, such as 

fire or major wind events, have return intervals of 250-800 years or more (Lorimer 1977, 

Seymour et al. 2002). 

3.3.2. Long-Term Study 

From 1952-1957, the USDA Forest Service (USFS) installed a replicated study to 

investigate the influences of silviculture and exploitive harvesting practices on the 

composition, growth, yield, and structure of mixed northern conifer stands (Sendak et al. 

2003).  Eight treatments were randomly assigned to one of sixteen 6.6 - 17.5 ha 

management compartments:  5-, 10-, and 20-year single-tree selection systems, 2- and 3-

stage uniform shelterwood systems, fixed and flexible diameter-limit harvests, and 
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unregulated commercial clearcutting.  In the early 1980s, both 3-stage shelterwood 

compartments were split to investigate the influence of precommercial thinning (PCT) on 

stand development.  In addition, an unmanaged natural area was later set aside as a 

“pseudo-control” for the experiment; this compartment was split in 1993 when it had 

developed into two distinct stands.  Marking prescriptions and harvesting techniques and 

timings for each treatment are described extensively in Sendak et al. (2003). 

The history of the PEF before 1950 is not well documented, but the forest was 

thought to be irregularly uneven-aged as a result of natural stand development 

confounded with periodic partial harvesting (Sendak et al. 2003).  A sawmill operated 

within the boundaries of the forest throughout much of the 1800s; pine and spruce were 

likely preferentially harvested from much of the forest during this period.  The spruce 

budworm epidemic of the 1913-1919 also had a significant influence on pre-treatment 

species composition (Seymour 1992).  Regardless, initial conditions throughout much of 

the northern half of the PEF were relatively constant, differing only slightly by the 

domination of spruce-fir or hemlock in the initial stocking inventories (Figure 3.1; 

Sendak et al. 2003).  Therefore, since this area was regarded as an individual stand, 

nearly all changes in species composition and structure can be attributed to treatment 

effects (J. Brissette, pers. comm.). 

This USFS study is one of the oldest continuously monitored silvicultural 

experiments in the United States (Seymour et al., in press).  Tree inventories have been 

conducted within compartments before and after every cutting treatment and 

approximately every five years thereafter since the study’s inception.  A systematic grid 

(with a random start) of 8 – 21 permanent sample points is located within each  
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Figure 3.1. Two views of the initial stand conditions during the establishment (1952-

1957) of USDA Forest Service’s long-term silvicultural experiment in the Penobscot 

Experimental Forest, Bradley, ME. 

 

compartment.  Diameter and condition of all trees >11.4 cm diameter at breast height 

(dbh = 1.35 m) were measured within 0.081 ha (0.2 ac) circular plots; saplings between 

1.2 and 11.4 cm dbh were measured in a concentric 0.020 ha (0.05 ac) circular subplot 

(Sendak et. al 2003).  Beginning in 1974, individual trees and saplings within each plot 

were labeled using a systematic numbering scheme creating a longitudinal record of tree 

growth and mortality. 

3.3.3. Field Measurements 

This study focused on structural development within 10 compartments assigned to 

one of five treatments.  Management treatments included two exploitative harvests, 

unregulated commercial clearcutting and fixed diameter limit harvests, and two 

silvicultural systems, 5-year selection and 3-stage shelterwood, both with and without 

spacing treatments.  An unmanaged natural area was used as control.  Prior USFS 

inventories and cutting entries for these compartments are shown in Figure 3.2. 
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From June 2001 through August 2002, 10,225 living and dead tree and sapling 

positions were located and mapped for five of the nested overstory/sapling plots in each 

compartment (50 plots total).  These mapped plots were randomly chosen from all USFS 

inventory plots within a compartment with the restriction that chosen plots must be at 

least 20 m away from any permanent access road whenever possible.  Dead tree or 

sapling positions were recorded by comparing stump locations and diameters to past 

USFS numbered tree lists for that plot; this reliably located between 15 – 85% of all dead 

stems, depending on compartment (Table 3.1).  Azimuths were taken with hand compass 

and distances from plot center were taken with a Haglöf DME (Haglöf 2003).  Positional 

errors increased with distance from plot center, but were generally no more than 0.25 m.  

Diameter at breast height was measured to the nearest 0.1 mm with calipers or metal tape, 

and condition (i.e., cull, declining, leaning stem, etc.) was recorded.  Crown 

measurements were taken for each crown quadrat as defined by the four cardinal 

directions.  Total tree or sapling height and the lowest live branch (continuous to the 

upper crown) were measured to the nearest 0.1 m either directly, using 10 and 15 m 

telescoping height poles, or as an average of 2-4 readings from a Haglöf hypsometer 

(Haglöf 2002).  Crown radius in each quadrat were measured to the nearest 0.1 m using a 

metal tape. 

3.3.4. Spatial Reconstruction Model 

Three steps were used to reconstruct the structural development of the stands in 

each compartment.  First, the height development of all past and current trees and 

saplings on each plot had to be reconstructed from the field measurements as the USFS 
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Figure 3.2. Inventory dates (open triangles) and harvest entries (filled circles) for the 10 

USFS management compartments used in this study.  Treatments include an unmanaged 

natural area (NA), commercial clearcutting (CC), fixed diameter-limit harvesting (DL), 

five-year selection system (5S) and three-stage shelterwood (SW).  Compartments 29A 

and 29B are a split compartment that differ only by the precommercial thinning that took 

place in 1983.
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Table 3.1. Number of locations and relocation rates for management compartments of 

the natural area (NA), commercial clearcut (CC), fixed-diameter limit (DL), the 5-year 

selection (5S) and the 3-stage shelterwood (SW).  Low relocation rates in Compartment 

29A is primarly from a precommercial spacing treatment in 1981. 

Locations Relocation Rates (% of) Treat-
ment 

Compart-
ment Living Dead Unknown Total Dead Dead 

> 11.4 cm dbh
NA 32A 1268 194 64 95.8% 75.2% 81.7% 

 32B 309 79 20 95.1% 79.8% 88.0% 
CC 8 888 326 800 60.3% 29.0% 41.6% 

 22 962 307 646 66.3% 32.2% 47.8% 
DL 4 814 314 362 75.7% 46.4% 79.0% 

 15 410 255 241 73.4% 51.4% 73.3% 
5S 9 394 205 175 77.4% 53.9% 75.8% 

 16 422 154 128 81.8% 54.6% 75.5% 
SW 29A 891 72 401 70.6% 15.2% 42.9% 

 29B 1625 336 59 97.1% 85.1% 80.0% 

 

had not collected height information during most of their inventories.  The Chapman-

Richards growth function was used in these modeling efforts: 

( )[ ] ε+−+= ⋅ cDBHbaHT  e135.1  [3.1] 

where HT is tree height in m, DBH is tree diameter at breast height in cm, a, b, and c are 

estimated parameters, and ( )φε ,0~ N .  There were several modeling approaches taken.  

For nine tree species that had n >100 and that occurred across a majority of stands and 

plots, multi-level, mixed-effects models were developed to estimate plot-specific and 

compartment-specific a and c parameters; this increased model precision dramatically 

(see Chapter 2).  For most remaining species, generalized nonlinear least squares (GNLS) 

regression was used to fit [3.1]; based on preliminary fits and scatterplots, some species 

were further grouped for analysis to allow better convergence of the final models.  Lastly, 

early inventories in the USFS data used broad species groups that were dropped or 
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refined in later inventories (e.g., “soft hardwoods” were later separated into black ash, 

trembing aspen, basswood, gray birch, black cherry, pin cherry, and elm spp.); GNLS 

models were developed using those same species groupings with the field data collected 

in this study.  Parameter estimates and fit statistics for the mixed-effects and GNLS 

models are presented in Tables 1.2 [Model II] and 3.2, respectively. 

 Height reconstructions of living trees and saplings use a modified proportional 

adjustment (MPA) that allows individual trees to grow proportionally more or less than 

the average tree or sapling as defined by the studywide, compartment-level, or plot-level 

models.  This approach had the advantage of smoothing deviations from the average 

height development pattern.  Therefore: 

( ) 35.135.1* +−= ii HTMPAHT  [3.2] 

where *
iHT  is the adjusted height prediction of the tree or sapling in inventory i, iHT  is 

the predicted height in inventory i from the plot-, compartment- and/or species-specific 

height equations, and: 

( ) ( )35.135.1 −−= predobs HTHTMPA  [3.3] 

where obsHT  is the observed tree or sapling height and predHT  is the predicted tree or 

sapling height using the dbh measured in this study.  Dead and unlocated trees and 

saplings were assumed to follow the average height development patterns and, therefore, 

did not use MPA.  Trees and saplings with broken tops were also assumed to follow 

average height development patterns until they reached obsHT . 

The next step in model development was simulating the location of all trees and 

saplings from the USFS inventories that could not be relocated during field 

measurements for this study.  Tree numbering protocols within USFS inventories were 
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Table 3.2. Chapman-Richards height-diameter models (Equation 3.1) for less common 

species measured in this inventory and for archived USFS species categories.  All models 

fit with general nonlinear least squares (Pinherio et al. 2005) and weighted by 1/σ2, if 

necessary, to reduce heteroscedasticity. 

Species Group n a b c MSE R2 

Fagus grandifolia 26 8.45 0.116 0.94 0.0589 0.863 

Picea glauca1 
 Treatments NA & 5S 
 Treatments CC, DL, & SW 

 
18 
26 

 
33.24 
17.02 

 
0.052 
0.047 

 
1.75 
1.12 

 
0.7312 
0.1517 

 
0.925 
0.972 

Thuja occidentalis 98 32.62 0.017 0.97 0.6266 0.796 

Acer saccharum 
Betula alleghaniensis 
Fraxinus americana 
Populus grandidentata 
Quercus rubra 

23 53.92 0.006 0.65 0.0755 0.928 

Fraxinus nigra 
Ostrya virginiana 
Prunus pensylvanica 

18 8.23 0.261 1.20 0.1903 0.815 

Larix laricina2 
Pinus resinosa 
Pinus spp. 

189 40.19 0.026 1.30 2.7890 0.914 

“Soft” hardwoods3 382 19.57 0.078 0.99 0.2590 0.887 

“Hard” hardwoods4 47 52.62 0.005 0.65 0.1423 0.804 

1 There was substantial difference in growth between older and younger age structures for this species. 
2 Sample sizes were inadequate and scatterplot suggested that the growth patterns were similar to Pinus 

strobus.  Results are the pooled GNLS model. 
3 Old USFS category.  Results are a pooled GNLS model for Populus tremuloides, Populus grandidentata, 

Fraxinus nigra, and Betula populifera. 
4 Old USFS category.  Results are a pooled GNLS model for Fraxinus americana, Fagus grandifolia, Betula 

alleghaniensis, Ostrya virginiana, Acer saccharum, and Quercus rubra. 
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systematic based on azimuth, distance from plot center and tree size.  Trees and saplings 

had three numbers.  The first number (0 – 9) refers to the 36° pie section of the plot the 

tree or sapling is located within; the second and third numbers refer to the distance in feet 

(distance class) from the plot center to the center of the tree or sapling.  If more than one 

tree and/or sapling occurred at the same distance in a pie, adjacent numbers or numbers 

above 54 (the radius of the large tree plot in feet) were assigned (R. Dionne, pers. comm.). 

 Exploratory analysis of the USFS numbering scheme using known tree positions 

showed the 36° pie sections to have the appropriate width (deviating the most in the CC 

treatment), but usually rotated from true north (range across plots:  -39.6° to +44.5°).  

Since isotropy was assumed for all spatial analyses, the plots were “rotated” to remove 

bias and more closely approximate the USFS protocols.  Random azimuths were then 

chosen from a uniform distribution in each pie class for all unknown locations.  There 

was a relationship between the distance class and the distance to plot center, but the 

variation was quite high.  Instead, pooled 10' distance classes were more robust and they 

differed for saplings and trees (Table 3.3).  A “reflected” normal distribution (i.e., 

simulated distances < 0 or greater than a plot or subplot radius were reflected back into 

the plot or subplot) closely approximated the distribution of distances observed.  

Positions of trees and saplings that were known to deviate from distance protocols (a 

second digit above 5 and 2, respectively) were simulated using a uniform distribution 

from 0 to the plot or subplot radius. 

The last step in model development was to scale the sapling subplot (0.020 ha) up 

to that of the tree plot (0.081 ha).  I used a modified version of the morphing algorithmn 

(Williams et al. 2003, Chapter 3) to remap the locations of the sapling plot from the  
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Table 3.3. Distributional statistics for location types and distance 

classes within the stem-mapped trees of this study.  These statistics 

were used to simulate unknown locations within the spatial analyses. 

Location Type Distance Class Mean (m) S.D. (m) 

0’ – 10’ 2.51 1.36 

10’ – 20’ 4.66 1.10 

Sapling 
(dbh ≤ 11.4 cm) 

20’ – 26.3’ 6.65 1.08 

0’ – 10’ 2.13 0.72 

10’ – 20’ 4.63 0.93 

20’ – 30’ 7.48 1.08 

30’ – 40’ 10.61 1.17 

40’ – 50’ 13.46 1.27 

Tree 

(dbh > 11.4 cm) 

50’ – 52.7’ 15.16 1.24 

 

Euclidean space C with origin (0,0) and radius of r (= 8.05 m) to a square space D of 

equal area and a side length of rπ0.5.  The normal morphing algorithm then proceeds by 

torodial wrapping D with copies of itself to create a 3 x 3 array.  This array is then 

“demorphed” back to Euclidean space to a circle of radius 3r and can be trimmed to any 

scale between r and 3r.  I deviated from the normal algorithm in two ways.  First, I 

randomly selected with replacement all subplots (Ci) within the same management 

compartment as the focal subplot for torodial wrapping within the algorithm; in other 

words, D could now be wrapped with copies of itself or with any other Di from that 

compartment.  Saunders (Chapter 3) reported that this technique was superior to the 

normal morphing algorithm for multiple plot analysis, generally reducing the regularity 

brought into the simulated pattern as normally happens with torodial wrapping.  Second, 

all Ci’s were rotated before morphing by adding a random azimuth to locations.  This 
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reduced the chance that the same “side” of a subplot would be used again during the 

wrapping procedure, thereby further reducing induced regularity in the simulated pattern.  

However, the rotation required an assumption of isotrophy in the pattern and analysis. 

3.3.5. Statistical Analysis of Structural Dynamics 

Forest structure has three major characteristics—species diversity and mingling, 

spatial distribution of tree positions, and variation in tree dimensions like diameter or 

height (Pommerening 2002, Aguirre et al. 2003, Kint et al. 2003)—that can be measured 

using a variety of spatially independent and/or spatially dependent variables.  Spatially 

independent variables summarized in this study include temporal changes in basal area, 

stand density, species composition, and diameter distribution, among the compartments 

and treatments.  Spatial-dependent variables that were summarized included the Clark-

Evans nearest neighborhood index (CE; Clark and Evans 1954), the K(d) function 

(Ripley 1976, 1977), the mingling index (DM; von Gadow and Hui 1999), and the size 

(height) differentiation index (TH; von Gadow and Hui 1999).  In addition, the stand 

complexity index (SCI; Zenner and Hibbs 2000) was used to characterize three-

dimensional physiognomic (i.e., positional) structure. 

3.3.5.1. Clark-Evans Nearest Neighbor Index 

The Clark-Evans nearest neighbor index (CE) is a ratio of the mean nearest 

neighbor distances in any spatial pattern (rA) to that mean distance (rE) expected under 

complete spatial randomness (csr).  As defined by (Clark and Evans 1954), CE is biased 

from edge effects as points near the perimeter of the plot having longer nearest neighbor 
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distances than would be expected under csr.  Therefore, a correction to rE must be 

incorporated to account for edge effects (Donnelly 1978).  CE is then calculated as: 
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where ri is the distance between tree i and its nearest neighbor, N is the total number of 

points in the pattern, A is the area, and P is the perimeter.  CE ranges from 0 for 

completely aggregated points to 1 for csr to 2.1491 for perfectly regular hexagonally 

distributed points (Clark and Evans 1954, Kint et al. 2003).  Significances of departure of 

CE from csr are tested with a standard, normal variate defined as: 
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where λ is the density of the point pattern (Clark and Evans 1954).   

3.3.5.2. K(d) Function 

A commonly used statistic in spatial point-pattern analysis, the K(d) function 

describes the spatial pattern as it relates to distance within the extent, or region of interest 

(Ripley 1976, 1977).  K(d) is defined as the expected number of points within distance d 

of an event, relative to the overall density (λ) of the point process.  K(d) is estimated from 

the distances (dij) between all points in the extent (Moeur 1993, Diggle 2003): 
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for d > 0, and wij is an edge-correction defined as the proportion of the circumference of a 

circle centered on point i and passing through point j that is inside A (Ripley 1976, as 

modified by Diggle 2003).  ( )dK̂  is typically calculated for evenly spaced d between 0 to 

one-half of the length shortest boundary or of the radius of A, at steps that are greater than 

the measurement error of the points (Freeman and Ford 2002).  ( )dK̂  is often reported as 

(Besag 1977): 

( ) ( ) ddKdL −=
π

ˆˆ  [3.7] 

( )dL̂  eases interpretation by linearizing ( )dK̂  and stabilizing its variance, and has an 

expected value of approximately zero at all d under csr.  Positive values of ( )dL̂  indicate 

clustering in the point pattern and negative values indicate regularity (Moeur 1993, 

Freeman and Ford 2002). 

 Significance of departure of ( )dL̂  from csr or any other point process of interest 

is usually estimated via Monte Carlo procedures (Diggle 2003).  Confidence envelopes 

are generated by simulating several realizations (η) of the point process that conforms to 

the null hypothesis, e.g., a homogenous Poisson process to test for csr, and calculating 

( )dK̂  for each realization.  Simulations usually are conducted with the same λ, d, and 

extent as the observed point pattern.  For a given α, local confidence envelopes are built 

from [ ]2αη  and [ ]21 αη − , sorted at each d (Goreaud and Pélissier 2000).  Although many 

studies have set 11 −−= αη  (Kenkel 1988, Harrod et al. 1999, Antos and Parish 2002), 



 

 89

Martens et al. (1997) suggest that these Monte Carlo confidence envelopes have low 

validity when η·α < 5.  This study used η = 1000, although some studies suggest 10,000 

realizations (Goreaud and Pélissier 2000). 

3.3.5.3. Mingling Index 

The mingling index (DM) measures the interspersion of marks within a point 

pattern (von Gadow and Hui 1999).  It is a point-level variable, giving the proportion of j 

nearest neighbors that have the same mark as the reference point i.  In this study, DM is 

defined using a 4-neighbor structural group as (Kint et al. 2001, Pommerening 2002): 

∑
=

=
3

13
1

j
iji VDM  [3.8] 

where: 

⎩
⎨
⎧
→
→

=
speciesdifferent  are neighbor  and  tree1
species same  theare neighbor  and  tree0

ji
ji

Vij  

As defined, DMi has only four possible values ( 1 and , , 0, 3
2

3
1 ) and can be summarized as 

a frequency distribution, but the DMi’s are usually averaged at the species-level and/or 

across the entire point pattern.  Low values of mean DM suggest a lack of species 

diversity within the pattern, and/or that individual species form highly segregated and 

clumped distribution within the pattern.  Conversely, high values of mean DM suggest 

more species diversity and/or that individual species are regularly distributed forming a 

more complete mixture in the point pattern (Kint et al. 2001).  The distributional 

properties of DM are not known, but a permutation approach can be used to test for 

significant differences between the observed DM and that of a random mixture of the 

same species proportions and point locations as the observed pattern (Kint et al. 2001). 
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3.3.5.4. Size Differentiation Index 

The size differentiation index (TH) describes the variation in a continuous point 

attribute (i.e., tree height) among the j nearest neighbors and the reference point I (von 

Gadow and Hui 1999).  Like DM, it is calculated as a point-level variable.  In this study, 

TH is defined using tree heights within 4-neighbor structural group as (Kint et al. 2001): 

( )
( )∑

= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

3

1 ,max
,min

1
3
1

j ji

ji
i HTHT

HTHT
TH  [3.9] 

THi varies from 0 to 1, but is usually summaried by species or for the entire point pattern 

either as a single mean index or as a frequency distribution of THi.  Species with a mean 

TH near 0 would be subordinate to most of their neighbors, indicating that the tree most 

likely occurs in the lower crown classes or strata within the point pattern.  Point patterns 

with a mean TH near 0 would have little height differentiation suggesting a uniformed, 

potentially even-aged structure (Kint et al. 2001, Aguirre et al. 2003).  Significance of TH 

can be tested with the same permutation approach as DM (Kint et al. 2001). 

3.3.5.5. Stand Complexity Index 

The stand complexity index (SCI) integrates tree positioning and size variation as 

a measure structural variability.  SCI is calculated by first creating a Delaunay 

triangulation of the spatial positions of the trees within a plot (Turner 2002), with the 

restriction that triangles along the edge of the 2-dimensional triangulation are omitted if 

they may have a closest neighbor outside the plot (Zenner and Hibbs 2000).  Size 

attributes associated with each tree can then be attached to the 2-dimensional 

triangulation to form a ragged triangulation surface in 3 (or more) dimensions.  The SCI 
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is then defined as the ratio of surface area of 3-dimensional triangulation to that of the 2-

dimensional triangulation or: 

T

n

i

ii A
ba

SCI ∑
=

×
=

1 2
 [3.10] 

where AT is the sum of the projected areas of all triangles (i.e., the 2-dimension 

triangulation), and |ai × bi| is the absolute value of the vector product of the vector AB 

with coordinates ai = (xib – xia, yib – yia, zib – zia) and the vector AC with coordinates bi = 

(xic – xia, yic – yia, zic – zia) (Zenner and Hibbs 2000). 

The distributional statistics for SCI under various spatial and tree size 

distributions are not known.  SCI has a lower limit of 1 when all trees are the same size 

(Zenner and Hibbs 2000).  SCI does not appear to have an upper limit, as trial simulations 

have shown SCI to increase dramatically with increasing tree density and the range in 

size among the trees (Saunders et al. 2002, McElhinny et al. 2005). 

3.3.5.6. Summarizing and Testing of Spatial Indices 

The randomness of the simulation procedure in the reconstruction models—in 

particular, the simulation of missing tree and sapling locations and the scaling of sapling 

subplots—required a permutation-based approach for summarizing and testing with any 

of the aforementioned statistics.  Therefore, 100 realizations of the complete spatial 

pattern, i.e. a “master” list of all known and unknown locations, were simulated for each 

plot.  For any given realization, spatial pattern was then held constant across inventories 

by simply trimming out all trees not measured during an inventory from the master list of 

locations.  Realizations that had n < 5 were discarded from further analysis since several 

of the spatial indices were unstable at such small sample sizes. 
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The various spatial indices were summarized by compartment and inventory.  The 

estimator for the mean value of any given index ( I ) was calculated as a weighted 

average of all realizations within a compartment or (Diggle 2003): 

∑∑∑∑
= == =

=
p

i

r

j
ij

p

i

r

j
ijij

pp

nInI
1 11 1

 [3.11] 

where p is the number of plots in a compartment, rp is the realizations for each plot p, and 

n is the number of trees in realization r of plot p.  For K(d), I  was calculated at each lag 

distance d.  The sampling variance of I  was estimated from 1000 bootstrapped samples 

of *I  defined as: 

∑∑
==

=
p

k
k

p

k
kk nInI

11

*  [3.12] 

where the kI  are sampled at random with replacement from all kji =× realizations in 

the compartment (Diggle 2003).  Bootstrapped 95% confidence intervals were calculated 

using ±1.96 standard errors of *I .  For CE and K(d), these bootstrapped 95% confidence 

intervals were tested against csr of a simulated plot of average density for each 

compartment in a particular inventory.  Permutation-based tests of DM and TH against a 

random mixture hypothesis were not conducted since it would require separate testing for 

each realization of any given plot (this would exceed 3.8 x 107 resamples in this study!). 

Lastly, the overall structural development of the compartments was summarized 

using a nonmetric multidimensional scaling (NMS) of the plot averages of basal area, 

density, hardwood importance (% hardwood density x % hardwood basal area), size class 

distribution, CE, DM, TH, number of stems with THi, ≥ 0.6 and THi, < 0.6, and SCIr.  

Each variable was standardized by the norm (Greig-Smith 1983) and Sørenson distances 
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were used.  A random starting configuration was used with a step-down dimensionality 

algorthimn on 40 runs of the data.  A Monte-Carlo test using 50 runs of permutated, 

randomized data was used to access the probability of obtaining a more stable solution by 

chance.  All NMS analyses were conducted with PC-ORD© 4.07 (McCune and Mefford 

1999) with the Kruskal-Mather algortithm (Kruskal 1964, Mather 1976, McCune and 

Grace 2002). 

3.4. RESULTS 

3.4.1. Stand Characteristics and Size Structure 

Traditional metrics capture some of the structural development patterns for the 

different treatments.  Trends in both basal area and density show the typical decline and 

subsequent regrowth after precommercial and commercial harvest entries for all four 

management treatments (Figure 3.3).  Generally, replicates responded similarly to 

harvest, just staggered in time slightly due to the different timing of harvests.  A notable 

exception is the two natural area (NA) compartments where there is a clear divergence in 

structure.  Beginning about 1980, the proportion of balsam fir basal area and density 

increased dramatically within Compartment 32A, and continued to decline in 

Compartment 32B (Figures 3.4 and 3.5).  The high proportion of small saplings suggests 

that Compartment 32A experienced a widespread regeneration event (Figure 3.6), likely 

from the loss of an older cohort of balsam fir from the canopy stratum of the stand due to 

the spruce budworm epidemic of the late 1970s.  Compartment 32B, on the other hand, 

has had relatively constant species composition, with hemlock gradually replacing 

balsam fir over time (Figures 3.4 and 3.5).  Structurally, the stand resembles an 

understory reinitiation stage within an even-aged development pathway (Figure 3.6; 
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Oliver and Larson 1996), even though the stand is likely uneven-aged after repeated 

partial harvesting prior to 1900 (Kenefic et al. 2005b). 

 Exploitative treatments that lead to irregular structures—the commercial clearcut 

and fixed-diameter limit harvest—shifted species composition away from the domination 

by spruce, fir and hemlock at the beginning of the experiment in the 1950s and towards 

hardwood species (Figure 3.5).  This trend was evident by 1975 and only accelerated 

following the second entries into these treatments in the 1980s.  Further, as indicated by a 

disproportionally large basal area relative to density, is a buildup of larger diameter cedar 

in three of the four compartments in these treatments (Figures 3.4 and 3.5).  This trend is 

likely to be related to a buildup of cull material that occurred with these two treatments 

(Kenefic et al. 2005a).  As expected, these stands had few trees in sawtimber size classes 

(Figure 3.6). 

The 5-year selection treatement had generally maintained a relatively stable 

species composition over 30 years, although there had been a gradual replacement of 

balsam fir with hemlock in both density and basal area (Figures 3.4 and 3.5).  This 

treatment maintained a wide diameter-distribution relative to the other treatments (Figure 

3.6), although the proportion of poletimber is much lower than would be expected in a 

balanced uneven-aged distribution (L. Kenefic, pers. comm.).  The wide error bars for 

density and basal area estimates (Figure 3.3), suggests that horizontal variability in the 

selection treatment may be high, likely due to skid trail network used in previous harvests. 

Both 3-stage shelterwood (SW) compartments received final removal cuts in 1974 

(Figure 3.2), prior to the inventories analyzed in this study.  Since all residual stems ≥6.4 

cm dbh were removed in this harvest, these compartments experienced a stand-wide 
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regeneration event and have since developed typical even-aged developmental pathways, 

with both density and basal area increasing as regeneration grew into the inventory 

(Figure 3.2).  In contrast to the other treatments, composition was dominated by spruce 

and fir, with the precommercial thinning (PCT) during 1983 within Compartment 29A 

further strengthening the dominance by these species (Figures 3.4 and 3.5).  By reducing 

competition and increasing individual tree growth, PCT also increased the proportion of 

stems in poletimber size classes relative to Compartment 29B that did not receive PCT 

(Figure 3.6). 

3.4.2. Spatial Patterning 

Treatments differed dramatically in spatial patterning, either as measured with CE 

or ( )dK̂ .  When both saplings and trees were considered together, CE statistics indicated 

a significantly aggregated pattern (p < 0.05) for all compartments except for 

Compartment 32B and for Compartment 16 from 1981 -1991 (Figure 3.7a).  

Regeneration events, either triggered naturally (Compartment 32A) or by harvesting, 

tended to reduce CE statistics for all treatments almost immediately.  Differences in the 

amount of decline in CE among compartments may be attributed to harvest methods 

and/or the density of hardwoods in the pre-harvest stand as it affects the proportion of 

stump sprouts to seed-origin seedlings recorded in subsequent inventories (Figure 3.5).  

( )dK̂  was almost always significantly clustered, and often for all distances up to 

8 m (Table 3.4; Appendix C).  Changes in the scale of aggregation (i.e., the peak of 

significance from csr) could not always be explained, probably because the higher 

proportion of simulated stem positions in some treatments muted some trends (Table 3.1).   
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For example, the scale of pattern in Compartment 32A, an unmanaged natural area where 

over 95% of locations are known, generally increased with time, suggesting density-

dependent competition in local neighborhoods that reduced small-scale aggregation of 

regeneration (Table 3.4).  Harvesting in the two exploitative treatments often, but not 

consistently, reduced the scale of aggregation to <2 m in later inventories, suggesting a 

strong influence of hardwood stump sprouting.  The scale of clustering in 5-year selection 

compartments was relatively constant or slightly increased.  PCT in Compartment 29A 

had a relatively short-term influence on broadening the scale of aggregation, but 

resprouting hardwoods and ingrowth quickly returned the scale to pre-PCT levels.  Scale 

of aggregation in Compartment 29B, managed as a 3-stage shelterwood without PCT, 

declined for several years and then increased; this may have resulted from a higher 

proportion of ingrowth from hardwood sprouts and their subsequent density-dependent 

mortality (Figure 3.5). 

When only trees (dbh >11.4 cm) were considered, spatial pattern was rarely 

significantly (p < 0.05) nonrandom.  CE detected aggregation in pattern for trees within 

three of the four compartments experiencing exploitative harvesting:  Compartment 4, 

Compartment 15 during the 1986 and 2000 inventories, and Compartment 8 for all 

inventories after 1990 (Figure 3.7b).  Although not always significant, ( )dK̂  values 

suggested that the scale of this aggregration was around 2 m (Table 3.4, Appendix C), 

particularly for the fixed-diameter limit harvest.  Significant uniformity in pattern was 

detected with ( )dK̂  only for the two most recent inventories in the Compartment 29A 

(Table 3.4). 
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3.4.3. Species Mingling 

Mingling among species within spatial pattern appeared to be driven by the 

relative proportion of hardwood and softwood species within the pattern.  Overall mean 

DM for most treatments were intermediate to low, largely clustered in the range of 

0.4 - 0.6 (Figure 3.8a).  Exploitative harvesting and PCT immediately reduced mingling 

in most cases, likely because these treatments would be applied with strong selection for 

certain species (i.e., exploitative harvests would leave cedar and noncommercial species, 

and PCT would remove balsam fir and most hardwoods).  Regeneration events appeared 

to further reduce mingling, suggesting that regeneration by any given species could be 

clumped in space (e.g., hardwood sprouting) or time (e.g., conifer masting).  Only 

Compartment 32B had relatively high DM values.  This stand had experienced the 

longest period without significant regeneration; one may assume that density-dependent 

competition probably had reduced many clusters to one or two individuals. 

As a group, hardwood species had higher DM values than softwood species in 

most treatments (Figures 3.8b and 3.8c).  Hardwood species were less common in most 

stands and much more dispersed, particularly in the older age structures.  Harvesting had 

much more dramatic impacts on hardwood DM values, presumably because of the stump 

and root sprouting of these species.  Softwood species had DM values that mirrored mean 

DM values in most stands because they made up a majority of stems (Figures 3.8a and 

3.8c).  Species-species DM values (not shown) generally exceeded 0.8 in most treatments 

and inventories, with the exceptions of balsam fir and red maple which mirrored the 

softwood and hardwood DM values, respectively.  The shelterwood treatment had the 

most pronounced difference between the species-specific DM and mean softwood DM  
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values.  Here mingling of balsam fir increased over time, and spruce and hemlock 

decreased over time, presumably because densities were high enough for spruce and 

hemlock to outcompete the balsam fir.  PCT increased the mingling of fir and of spruce; 

hemlock DM values were lowered because it became a much larger component of the 

stand (Figure 3.5). 

3.4.4. Height Differentiation 

Average height differentiation (TH) was not dramatically different among the 

treatments (Figure 3.9).  Treatments with uneven-aged structures, the unmanaged natural 

area and 5-year selection, had equal to slightly greater TH values than exploitative 

treatments, which in turn were almost always significantly greater than the 3-stage 

shelterwood.  The effect of harvesting on TH was not dramatic, except in the commercial 

clearcut. 

Although the mean TH values did not separate treatments well, the frequency 

distribution of THi at each inventory did (Figure 3.10).  Both the unmanaged natural area 

and 5-year selection treatments showed wide distributions of THi over time, with a large 

component of the trees having a THi > 0.6.  Commercial clearcut, fixed-diameter limit 

harvesting, and especially 3-stage shelterwood treatments have few trees in these THi 

ranges.  This observation suggests that there is far more variability in height 

differentiation in localized tree neighborhoods in uneven-aged structures than in the 

irregular- or even-aged structures.   
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3.4.5. Structural Complexity 

The stand complexity index (SCI), when calculated as defined by Zenner and 

Hibbs (2000), gave rather unexpected results and did not separate treatments well across 

inventories (Figure 3.11a).  Although SCI for the unmanaged natural area and 5-year 

selection treatments was consistently high, values of SCI for both the commerciaclearcut 

and 3-stage shelterwood treatments were equally high at certain stages in their 

developments.  The disparity among the unmanaged natural area compartments also 

suggested a major problem with SCI.  Compartment 32A was increasing in SCI even 

though the stand was becoming much denser with only 1-2 canopy layers, while 

Compartment 32B was declining in SCI even though the stand was becoming less dense 

with multiple canopy layers. 

On closer inspection, I determined that there was a direct correlation between SCI 

and tree density, and that this correlation limited interpretations for the index.  

Simulations done by Saunders et al. (2002) suggested that SCI should be weighted by 

density-γ where γ ranged from 0.3 to 0.5 depending on spatial pattern and size range of 

the trees.  Since trends among the treatments using γ equal to 0.3, 0.4, and 0.5 were not 

appreciably different, SCI was weighted by density-0.5 (rSCI).  The result was that rSCI 

for the uneven-aged compartments (the unmanaged natural area and 5-year selection 

system) were consistently higher than for either commercial clearcutting, fixed-diameter 

limit harvesting or 3-stage shelterwood compartments (Figure 3.11b).  However, rSCI 

could distort trends when tree densities are very low (n<20), as in the earliest inventories 

of the shelterwood compartments. 
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3.4.6. Summary of Structural Development 

The final nonmetric multidimensional scaling (NMS) ordination of structural 

variables was significant (p = 0.0196), converging on a 2-dimensional solution after 78 

interations and accounting for 97.4% of the variation (Figure 3.12).  Final stress was 6.59 

and final instability was 2.45 x 10-6.  Axis I of the ordination was positively related to 

stem density, number of saplings, and the number of stems with THi < 0.6; these were 

generally collinear.  Axis II of the ordination was most strongly related to hardwood 

importance (positively) and the number of sawlog-sized stems (negatively).  Surprisingly, 

mean CE, TH, and DM had relatively minor effects on ordination scores along any axis 

(Figure 3.12). 

The NMS ordination showed a clear separation among uneven-aged, irregular-

aged, and even-aged compartments, primarly along Axis II (Figure 3.12).  Natural area 

compartments showed a clear divergence within the NMS and were progressing into two 

different structural spaces.  The two 5-year selection compartments are remarkably static 

in ordination space, generally located between the two natural area compartments, and 

harvests in these compartments had only minor effects on the ordination scores.  On the 

other hand, harvests in the fixed-diameter limit and commercial clearcut, and the 

precommercial thin in the 3-stage shelterwood, dramatically affected ordination scores, 

generally moving the stands upwards and to the left in ordination space which would 

reflect increasing hardwood importance and decreasing density.  Further, since the 

harvests created younger stands, the fixed-diameter, commercial clearcut and 3-stage 

shelterwood compartments are changing the most rapidly in ordination space over time.   
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Figure 3.12. Nonmetric multidimensional scaling (NMS) ordination of spatial and 

nonspatial structural variables for the management compartments over the period of 

approximately 1974-2002, as separated by treatment.  Harvest entries are indicated by the 

diamonds.  Variable scores are plotted from the centroid of the data and represent both 

the strength and direction of “pull” of that variable on the ordination.
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3.5. DISCUSSION 

3.5.1. Silvicultural Effects on Structural Development 

Harvesting strongly affects the structural development of any forest stand, yet few 

studies have quantified the spatially explicit changes in point patterns, species mingling, 

or size differentiation resulting from its application.  Sendak et al. (2003), Kenefic et al. 

(2005a), and several earlier studies of this particular experiment focused on conventional 

changes in basal area distributions, species composition, and diameter-distributions to 

investigate ecological and financial viability of the various systems.  Results from these 

studies suggested that there were differences among the treatments in some structural 

parameters, but the low replication often limited the power of formal ANOVA-style 

statistical testing.  Instead, this study took a Monte Carlo-based approach that 

incorporated the variability at the plot level, thereby detecting strongly significant 

differences among treatments in most of the spatial-explicit structural metrics. 

Harvesting consistently increased the aggregation and reduced species mingling 

within spatial pattern through inducing a regeneration event (Figures 3.7 and 3.8).  This 

generally agrees with Phillips and MacMahon (1981), Skarpe (1991), Harrod et al. 

(1999), and Montes et al. (2005), whom all report increases in aggregation due to plant 

regeneration.  Within the Acadian ecoregion, natural regeneration of trees is prolific, 

ranging from 25,000-80,000 trees ha-1, across a wide array of intensities and frequencies 

of partial overstory harvests (Brissette 1996).  Balsam fir, in particular, seeds frequently, 

disperses widely, and can dominate the seed rain contribution from other less frequent 

and masting species like spruce and eastern white pine (Westveld 1931, Seymour 1992, 

Greenwood et al. 2003).  Balsam fir’s early dominance in these stands tended to reduce 
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mingling levels over time and during any regeneration event.  Further, several northern 

hardwood species employed either a root or stump sprouting regeneration strategy.  

Harvesting of these species would cause strong aggregation at short scales (<2 m) and a 

large decrease in mingling, as the single-stemmed canopy tree would be replaced by 

multiple sprouts.  These trends were clearly seen in this study within the exploitative 

harvests that shifted species composition towards hardwood dominance (Table 3.4, 

Figure 3.8, and Appendix C). 

Second, the harvesting operations themselves inherently changed the spatial 

pattern.  Most skid trail and road networks that became established in the compartments 

are not regularly spaced.  Regeneration and regrowth of existing regeneration on the skid 

trails was stunted or even absent, likely because of increased soil compaction.  Soil 

disturbance along the trail edges appeared to promote regeneration.  Therefore, 

regeneration in many of the compartments appears clustered, although at scales beyond 

those measured in this study (Saunders, pers. obs.).  Nevertheless, this clumpiness would 

still be detected in the CE index and ( )dK̂  function, particularly when a trail bisected a 

sampling plot, but largely confounded with the direct effects of regeneration.  The 

reduction in CE statistics for larger trees (Figure 3.6) suggests these harvest effects may 

be quite pronounced in both exploitative treatments (i.e., commercial clearcutting and 

fixed-diameter limit harvesting), where skid trails are not designated but harvesting 

equipment moved across a large proportion of the site.  It is also likely that the 5-year 

selection treatment increased this effect since the skid trail network was particularly 

dense, continually reused, and rarely regenerated in these compartments. 
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Both height differentiation and stand complexity (as measured by rSCI) were 

highest in multiple-strata, uneven-aged unmanaged natural area and 5-year selection 

system, intermediate in the irregularly aged exploitative harvests, and lowest in the even-

aged, 3-stage shelterwood compartment.  This result was largely a function of tree size 

distribution within each compartment, and not necessarily a valid comparison as each 

treatment is at different point in stand development.  However, the distribution of THi 

values (Figure 3.10) suggested that it will likely take several decades before the 

commercial clearcutting and 3-stage shelterwood approach the differentiation levels in 5-

year selection or unmanaged natural area. 

Although unreplicated in this study, the effect of precommercial thinning (PCT) 

had mixed effects on structural development.  PCT increased height differentiation and 

structural complexity (Figures 3.10 and 3.11), agreeing with the findings of Homyack et 

al. (2004) who reported that PCT increased canopy stratification and vertical height 

diversity by 11 years after thinning.  However in constrast to Homyack et al. (2004), this 

study found that PCT unexpectedly increased mingling primarily through increasing the 

species diversity of the stand (Figures 3.5 and 3.8a).  Vacant growing space created by 

PCT allowed a larger component of hardwood sprouts to survive rather than be 

outcompeted by neighboring softwoods (Lingren and Sullivan 2001, Daggett 2003).  

Aggregation in the spatial pattern after PCT also increased as a function of the higher 

hardwood component.  Only recently has regularity imposed by the thinning treatment 

itself been detected (Table 3.4); this is probably because enough hardwood sprouts have 

died from self-thinning to “unmask” the treatment. 
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As suggested by Kenefic et al. (2005b), the unmanaged natural area was not an 

“ideal” control for comparison with the silvicultural and exploitative treatments because 

it was added as an afterthought to the experiment and not included within the 

randomization used to assign compartments to treatments.  Further, one could argue that 

by splitting the original compartment in the early 1990s, the natural areas were 

pseudoreplicated and their value further diminished.  However, the structural divergence 

between the two compartments may represent two distinct developmental pathways for 

these forest types (Figure 3.12).  Poor soil drainage in Compartment 32A (Kenefic et al. 

2005b) likely favored balsam fir over hemlock, and removal of overstory balsam fir by 

spruce budworm in the early 1970s caused that stand to prolifically regenerate to balsam 

fir, thus becoming much more aggregated (Figure 3.7), unmingled (Figure 3.8), and less 

differentiated (Figures 3.9 and 3.10) over time.  The structure of the stand is now more 

characteristic of an irregular, two-aged stand.  Compartment 32B, on the other hand, had 

a much higher proportion of hemlock in the overstory and subsequently did not 

experience a regeneration event.  Structurally, the stand has been relatively stable in 

spatial pattern and mingling (Figures 3.7 and 3.8), but is becoming slightly less 

differentiated (Figure 3.10) as lower strata individuals slowly fall out of the stand.  This 

late-successional stand will likely follow this trajectory until either some density-

independent mortality event creates openings in the canopy and/or hemlock eventually 

(over several decades) outcompetes the other less shade-tolerant species.  These two 

structural pathways would not be atypical on an undisturbed landscape as the proportion 

of balsam fir and hemlock often drive dynamics in softwood-dominated stands within the 

Acadian ecoregion (Seymour 1992). 
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In this respect, the structural developments within the two natural area 

compartments are important benchmarks to compare with management of softwood and, 

to a lesser extent, mixedwood sites across central Maine.  Results from this study suggest 

that only 5-year selection would fall within the natural range of variability in spatial 

structure captured by the two natural area compartments (Figure 3.12).  Exploitative 

treatments, like commercial clearcutting and diameter-limit harvesting, can create a more 

aggregated and less complex structure than natural development on softwood sites after 

multiple entries, primarly because they strongly shift composition towards early 

successional, sprouting hardwood species.  A uniform shelterwood, as was applied in this 

study, created an undifferentiated and less complex structure that is atypical in natural 

stands.  As a result the exploitative treatments and the even-aged shelterwood were quite 

distinct in overall structural attributes from even Compartment 32B which had 

experienced a stand re-initiation event from spruce budworm mortality (Figure 3.12, 

upper right natural area trajectory).  Structural retention of some larger-diameter, mature 

overwood during the last shelterwood removal cut or within the commercial clearcut or 

diameter-limit harvests, would likely reduce these differences.   

3.5.2. Adequacy of the Stand Complexity Index 

The stand complexity index (SCI) in its original form appears to be biased when 

comparing stands of vastly different structures and densities.  For the few applications of 

SCI that are found in the literature (Zenner and Hibbs 2000, Zenner 2000, Zenner 2004), 

the compared stands had tree densities that varied by only a factor of 2-3, were all of the 

same general forest type and composition, and represented a chronosequence along the 

same development pathway.  In this study, tree densities varied by 45-fold across 
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compartments and inventories, were of vastly different forest types and compositions, 

and were not on the same development pathways.  Although one could argue that the 

inherent bias in SCI has been inflated in this study since it was calculated on all measured 

tree stems (e.g., Zenner and Hibbs [2000] used a 5 cm dbh lower threshold), small 

diameter stems make up a significant component of the structure in many early-

successional stands and several of these stands would have no SCI value until far into 

stem-exclusion.  Use of rSCI is preferred as it removes the influence of density on SCI, 

making the index far more responsive to size differentiation and spatial pattern. 

Regardless of its form, SCI also can be criticized in that it does not explicitly 

recognize that canopy gaps increase structural complexity (McElhinny et al. 2005).  With 

large scale plots, this weakness can be overcome using a “moving-window” approach and 

quantifying the distribution of local SCI values within a stand (Zenner 2005).  Canopy 

gaps would then occur in locations where SCI was extremely low compared to 

neighboring windows.  In reality, this approach would roughly mimic the distribution of 

THi, where the number of neighbors included in each THi estimate increases with window 

size.  THi does not necessarily require a complete enumeration of all tree locations and 

sizes in a stand (von Gadow and Hui 1999), and therefore might be more practical than 

SCI for many applications.  Further, the distribution of THi values within a stand may 

have higher discrimatory power than rSCI alone (Figure 3.12). 

3.5.3. Discriminatory Power of the Spatial Indices 

Generally, the spatial indices investigated in this study had relatively low 

discriminatory power compared to other, more traditional structural variables (Figure 

3.12).  Plot-level means of CE, DM, and TH were not very useful, but the distribution of 
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values for those indexes (e.g., DMi or THi) across subpopulations were.  ( )dK̂  was useful 

in detecting the scale of clustering among the treatments, which further clarified the 

potential pathways of development, but the information gain was marginal given the high 

computional cost of ( )dK̂  within a Monte Carlo modeling framework.  Reasons for this 

low discriminatory power of the spatial indices may include:  1) similarly in spatial 

relationships among seedlings and saplings as all stands were regenerated naturally; and 

2) compartment-level spatial relationships are averaged across realizations of plots 

possibly muting differences. 

3.5.4. Effectiveness of the Spatial Model 

Overall, results from the structural model developed in this study generally agreed 

with other observations from the PEF by Brissette (1996), Sendak et al. (2003), Kenefic 

et al. (2005), and others.  However, the model had some weaknesses that were not 

immediately apparent.  For compartments with low tree relocation rates (Table 3.1), the 

random placement of unknown stem locations within the model likely caused an 

underprediction of aggregation, an overprediction of mingling, and some bias within size 

differentiation patterns, which in sum further weakened the discriminatory power of the 

spatial indices (Figure 3.12).  These biases were generally greatest in the earlier 

inventories (before 1990) since far fewer of the dead stems where relocated.  Further, 

Saunders (Chapter 3) noted that the morphing algorithm would introduce some bias into 

plot estimates of spatial pattern, particularly for plots that were extremes within any 

particular compartment.  However, the morphing algorithm itself should not appreciably 

change the mingling or size differentiation patterns, as most local, spatial relationships 



 

 121

would not change except where the various subplots abut one another.  Obviously, 

overlay of the scaled sapling subplot onto the tree plot would change some spatial 

characteristics, but since saplings dominate the spatial pattern in most compartments, this 

bias should be minimal. 

This structural model was designed to take advantage of spatially explicit, 

longitudinal measurements on small-scale (<0.1 ha), forest inventory plots.  Generally, 

spatial analyses of these types of inventory plots have generally been avoided due to a 

lack of spatial inference from the small plot size, and difficulties in scaling patterns of 

subpopulations from nested plot designs.  Instead, most researchers have relied on a very 

few (≤5) large plots that map spatial relationships among only the largest size classes.  

This approach has power in that larger-scaled patterns can be detected and edge 

influences on pattern are minimized.  However, there are few studies of repeatedly 

measured, large-scale plots.  One rare example is that of Ward et al. (1996) where spatial 

dynamics in an old-growth deciduous forest were characterized across three inventories 

spanning a total of 60 years.  For most studies, therefore, there is an obvious tradeoff 

between spatial and temporal scale.  I choose to take advantage of the temporal scale with 

the model presented here. 

Spatial analysis of forest inventory plots offers additional benefits over the 

traditional analysis of larger plots.  Forest inventories can be designed to more efficiently 

and economically capture the average and range of neighborhood conditions within a 

stand than one large plot of the same total sampled area (Husch et al. 1982).  Therefore, 

plots can be randomly located within stands or strata, rather than biasedly placed to 

capture the range of spatial relationships found in the stand.  Multiple plots also allow 
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spatial inference to be drawn from the experimental design rather than comparisons with 

stochastic models (i.e., csr) that must be assumed for individual plots (Diggle 2003).  

Lastly, at adequate sample intensities, broader scaled spatial analyses beyond the scale of 

an individual plot can still be conducted using the sample plot averages for any spatial 

indices of interest (Fúle and Covington 1998). 
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EPILOGUE 

This study developed, tested, and applied a new approach for spatial analysis of 

typical growth-and-yield type inventory designs where plots were circular and small 

(<0.2 ha), with different subpopulations of trees nested at different scales.  While this 

approach had some limitations, it has potential use for validation of spatially explicit 

growth models, for scaling subplots in realistic structural simulations of forest stands, and 

for exploratory spatial analysis of large, longitudinal datasets. 

In Chapter 1, I compared two modeling approaches for estimation of height-

diameter relationships for nine common northeastern tree species.  Nonlinear, mixed-

effect models that included random parameters to account for the sampling design (i.e., 

compartment and plot levels) consistently outperformed models fit by generalized 

nonlinear least squares with only fixed parameters.  Inclusion of plot density or basal area 

only slightly improved model fits and rarely supplanted the plot-level random parameter.  

However, anecdotal evidence suggested that stand structure might influence the height-

diameter relationship; a better-structured dataset would be needed to statistically test for 

this effect. 

The extension of the morphing algorithm, originally used by Williams et al. 

(2001, 2003) to edge-correct canopy cover estimates, to spatial point pattern analysis was 

explored in Chapter 2.  Simulation experiments suggested that the unaltered morphing 

algorithm introduced bias into the point pattern, mostly as regularity at a scale near the 

plot radius.  However, when combined with Monte Carlo and other resampling 

techniques across replicated point patterns, the morphing algorithm showed promise as a 

scaling tool for nested plot/subplot designs, introducing minimal bias into the 
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aggregation/regularity found in spatial patterns characteristic of naturally-regenerated 

forest stands. 

In Chapter 3, I reconstructed spatial relationships within ten compartments of a 

long-term silvicultural experiment at the Penobscot Experimental Forest (PEF) by using 

current and past inventory data from 10,225 stem-mapped trees, the allometric 

relationships from Chapter 1, and the morphing algorithm from Chapter 2.  Regeneration 

events, whether induced by natural stand dynamics or through harvesting, determined 

spatial pattern, generally increasing the aggregation in the spatial pattern, and reducing 

both species mingling (i.e., intermixing) and height differentiation.  Further, only 

structural dynamics within uneven-aged managed compartments were representative of 

the natural stand dynamics within the PEF.  Lastly, the reconstruction model clearly 

suggested that the Stand Complexity Index (SCI), developed by Zenner and Hibbs (2000) 

to characterize both spatial pattern and size differentiation, was highly correlated with 

tree density and was not adequate for comparing widely different stand structures. 

STRENGTHS AND LIMITATIONS 

The modeling approach developed for this study took advantage of temporal scale 

from long-term inventory plots at the expense of a smaller spatial scale.  This approach 

has been rarely used in previous studies.  Instead, many authors have conducted spatial 

analyses on a few, large (≥0.5 ha) plots and inferred spatial dynamics directly or across a 

chronosequence, mostly only using the pattern of the largest tree size classes (e.g., Mast 

and Veblen 1999, Zenner 2004, von Oheimb et al. 2005).  A more insightful and 

analytically stronger approach would be to pair spatial pattern analysis with 

dendrochonological reconstruction of a stand.  Motta and Edouard (2005), for example, 
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used this retrospective approach and found that land-use changes and not natural 

disturbances were responsible for most of the changes in structure across a mixedwood, 

multiaged forest.  The study reported here is similar and has many of the same strengths 

as a retrospective study, except that this study is prospective (Gratzer et al. 2002) by 

using repeat measurements on sample plots rather than dendrochonological 

reconstructions to add a temporal component to the analysis.  Further, this study takes 

advantage of efficient sampling methodology (i.e., nested plots) to estimate pattern for 

most established size classes, rather than truncating analyses to only largest size classes. 

In terms of detecting true change in forest structure as affected by silviculture, the 

relatively long temporal scale (30+ years) was a major strength of this study.  For 

example, since the area within the PEF where the long-term silviculture experiment was 

installed was largely one contiguous stand (Sendak et al. 2003, J. Brissette, pers. comm.), 

I am relatively confident that the differences in spatial structure detected in this study 

were true treatment effects.  However, without this history or the repeated plot 

measurements within the compartments, the limited spatial scale of the analysis would 

strongly support this conclusion. 

The morphing algorithm is the key component in my reconstruction model, so any 

biases introduced by that algorithm (i.e., increased regularity at the scale of the subplot) 

will strongly affect any conclusions from Chapter 3.  Overall, I feel that the morphing 

algorithm is an appropriate avenue to conducting an exploratory analysis of spatial 

structure using nested growth and yield inventory systems, only if 1) multiple subplots 

are available from the stand or stratum for torodial wrapping within the algorithm; 2) 

isotropy (i.e., no directional trends) in the pattern can be assumed; and 3) the spatial 
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attributes at the stand or stratum level are the primary objects of interest, not the plot-

level attributes.  If any of these conditions are not met, data should be trimmed to the 

smallest shared spatial scale of the subpopulations of interest, or trimmed of the 

subpopulations from the smaller scale plots.  Spatial interactions between subpopulations 

measured on different scales should be cautiously interpreted after morphing, as the 

algorithm makes no attempt to adjust positions of smaller-scaled patterns based on 

locations of individuals within larger-scaled patterns. 

Although the morphing algorithm and reconstruction model described in this 

study can be computationally demanding (primarily from calculation of spatial statistics 

on multiple realizations of the same plot), there are few alternatives for spatial analysis in 

nested or clustered plot designs.  Woodall and Graham (2004) proposed trimming Forest 

Inventory and Analysis clustered 0.0168 ha circular subplots and then combining them 

into a 0.0427 ha square for spatial analysis, but this approach disregarded 36% of the 

spatial information.  Point process models may be fit to observed point patterns in 

simple-structured stands, thereby inferring information about underlying ecological 

mechanisms (Stamatellos and Panourgias 2005).  In more complicated stands with 

multiple species and many size classes, it is unlikely this approach would work with 

current process models as the knowledge of the underlying interactions among species 

and size classes, the complexity of the model, and the computational demands increase 

factorially with the combined number of species and size classes.  Unlike these methods, 

morphing is relatively simple, quite efficient, generally robust, and maintains 

approximately the same spatial structure (pattern, mingling, and differentiation).  

Morphing should be valuable for scaling measured plots within stands to larger extents 
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needed in spatially explicit, individual-based growth models and for visualization 

systems like the Stand Visualization System (McGaughey 2004). 

Height models were another major component of the reconstruction model.  As 

outlined in Chapter 1, the mixed-effect approach had a major advantage over generalized 

nonlinear least squares in that it explicitly incorporated the hierarchical sampling design.  

This approach helped account for site effects that could have biased a more general 

model and made the plot-level estimates much more accurate.  In the reconstruction 

model, I made a further assumption that height of individual trees within a plot should 

develop allomorphically; this assumption prevented trees from “jumping up” or “falling 

down” suddenly at the end of the simulation cycle to their observed heights from plot 

average height.  However, trees rarely have smooth height growth patterns with growth 

developing somewhat erratically as conditions favor sudden pulses of growth (e.g., 

sudden death of competitor). 

Lastly, the reconstruction model made several simplifications to be consistent 

with the U.S. Forest Service’s sampling protocols, particularly with the tree numbering 

system.  These simplifications introduced some bias into the spatial metrics, primarily 

increasing randomness and reducing mingling, since stems were randomly located within 

the “distance-pie” locations.  For example, I made no explicit attempt to model stump 

sprouting for missing hardwood stems. 

RECOMMENDATIONS 

Results and observations form this study indicate several recommendations for 

improving the long-term U.S. Forest Service study at the PEF.  First, the study needs to 

be made more spatially explicit by mapping the locations of, at the very least, the large 
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trees in the plot and resisting convolution of the plot design.  The morphing algorithm 

developed here may be inappropriate to use for ecological analysis with multiple nesting 

levels, although it still would be appropriate to use for visualization purposes. 

Second, heights should be measured on a subset of sample trees, chosen from a 

representatively across plots, compartments and size classes in order to realize a dense 

enough sample to calibrate regional height-diameter equations.  These height readings 

should be complimented with similar measurements in other experimental forests in the 

Northeast.  There is a real need to develop these relationships for NE-TWIGS, as current 

height-diameter models are directly from work in the Lake States. 

Third, and most importantly, the analysis of the silviculture study would greatly 

benefit from a mixed-modeling framework.  Past publications have analyzed the study as 

an ANOVA-type design, based on the most current compartment-wide averages in order 

to avoid psuedoreplication.  While appropriate, this approach has likely failed to detect 

differences between compartments in some circumstances due to a lack of replication at 

the compartment level.  Further, these past statistical approaches are statistically 

inefficient because they overlook both the individual sample plots and the repeat 

measures nature of the data.  A mixed-modeling framework can incorporate both, by 

assigning both plot (specifically time) and compartment random coefficients to a model 

of volume growth (or any other plot-level variable) over time, and partition the variability 

in the model to treatment-, compartment- or even plot-level sources.  In this respect, one 

can look at the trends in the changes in variables, not the absolute values of the variables 

themselves at some predetermined time. 
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FUTURE DIRECTIONS 

Based on the findings of this research, there are potentially several directions for 

future, productive investigation.  First, more robust crown-width and crown-length 

relationships for the PEF study are needed, perhaps including spatial relationships among 

competitors.  This effort would permit the comparison of crown development over time 

within the U.S. Forest Service compartments.  Second, a more thorough analysis of the 

species-specific interactions in pattern is needed, perhaps across a larger dataset than 

available from the PEF.  This effort would help illuminate the competitive interactions 

among species as affected by stand-level structure and tree size. 

This information, along with many of the results from this dissertation, could then 

be used to help calibrate spatially explicit, individual-based physiological growth models 

like SORTIE (Pacala et al. 1993, 1996) or ZELIG (Urban et al. 1991).  I believe that 

these types of models are essential for future silvicultural research in the Northeast, 

particularly as existing forest types become more and more stressed from climate change 

and other related stressors (e.g., invasive insects).  Fine-scale, heterogeneous patterns of 

canopy disturbance, typical of northeastern stands, are difficult to model with traditional 

patch-based models of forest dynamics.  Spatially explicit, individual-based models can 

be parameterized with spatial models of environmental factors and distributions of trees 

as measured in descriptive field studies (Gratzer et al. 2004), thus allowing a much tighter 

linkage between modeling pattern and process at the stand scale.  Further, as Kenefic et 

al. (2005b) suggested, control and reference stands are lacking in the region; simulations 

with spatially explicit individual-based models could serve as a surrogate to assess risk 

with various silvicultural and management options. 
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There is a great need to develop methodology for collecting and analyzing forest 

structural patterns across larger extents in order to relate patterns and processes operating 

on fine scales (e.g., competition) to those operating on broader scales (e.g., natural 

disturbance) (Levin 1992, Gratzer et al. 2004).  Spatially-explicit sampling can be very 

time-consuming and costly, and does not always yield a large increase in knowledge of 

the sampled ecosystem over more traditional, non-spatial analyzes (e.g., Figure 3.12).  

These drawbacks often are primarly because a broad enough range of scales cannot be 

studied since sampling costs rise exponentially as plots increase in size.  As discussed in 

Chapters 2 and 3, use of small plots within a well-designed inventory system could 

increase the scale, by using the plot averages of any spatial parameter; however, this 

approach would still require a large amount of fieldwork and may not be appropriate for 

spatial analysis of canopy patterns.  Further, although spatially explicit individual-tree 

models may be calibrated with this fine-scale spatial data, they are not feasible for 

modeling pattern and process at broader scales because of computational expense due the 

vast size of the datasets that would be involved and the model’s stochasticity (Gratzer et 

al. 2004).  For example, a run of a 100 ha area with an average of 10,000 trees/ha 

simulated over 100 years would likely require » 5 x 1012 calculations.  Remote sensing 

approaches for quantifying spatial structure over large areas will be required.  One of the 

most promising, light detection and ranging systems (LiDAR), has been used to estimate 

height and crown properties (Næsset and Økland 2002), leaf area index (Roberts et al. 

2005), and spatial positions (Yu et al. 2004), of individual trees, and stand-level vertical 

structure, volume and biomass (Zimble et al. 2003, Popescu et al. 2004, Hyde at al. 

2006).  Koukoulas and Blackburn (2005) provides one example of the use of LiDAR for 
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spatial pattern analysis.  Using a combination of LiDAR, airborne thematic mapper, and 

ground measurements, they developed a spatially-explicit canopy model for a oak-beech 

forest and then conducted ( )dK  analysis to investigated spatial relationships among tree 

sizes, tree species and gap locations.  Repeated successively over several years, spatially-

explicit datasets developed from or supplemented by LiDAR and other similar remotes 

systems, might illuminate the dynamics of forest canopy structure over broad scales at a 

fraction of the cost and effort from solely ground-based approaches. 



 

 132

BIBLIOGRAPHY 

Aguirre, O., Gangying, H., von Gadow, K., and Jiménez, J.  2003.  An analysis of spatial 
forest structure using neighbourhood-based variables.  For. Ecol. Manage. 
183(1-3): 137-145. 

Antos, J.A., and Parish, R.  2002.  Structure and dynamics of a nearly steady-state 
subalpine forest in south-central British Columbia, Canada.  Oecologia 130(1): 
126-135. 

Armesto, J.J., Mitchell, J.D., and Villagran, C.  1986.  A comparison of spatial patterns of 
trees in some tropical and temperate forests.  Biotropica 18(1): 1-11. 

Assmann, E.  1970.  The principles of forest yield study.  Pergamon Press, Oxford. 520 p. 

Baddeley, A., Turner, van Lieshout, M-C, et al.  2004.  spatstat: Spatial point pattern 
analysis, model-fitting and simulation.  Version 1.5-4.  Available online at 
http://www.maths.uwa.edu.au/~adrian/spatstat.html. 

Bailey, T.C., and Gatrell, A.C.  1995.  Interactive spatial data analysis.  John Wiley & 
Sons, New York, NY.  413 p. 

Barnes, B.V., Zak, D.R., Denton, S.R., and Spurr, S.H.  1998.  Forest ecology.  4th 
Edition.  John Wiley & Sons, Inc., New York, NY.  774 p.Besag, J.  1977.  
Contribution to the discussion of Dr. Ripley’s paper.  J. Royal Stat. Soc., Series B 
39(2): 193-195. 

Bragg, D.C.  2001.  A local basal area adjustment for crown width prediction. North. J. 
Appl. For. 18(1): 22-28. 

Briggs, R.S.  1994.  Site classification field guide.  CFRU Tech. Note 6, MAFES Misc. 
Publ. 724.  Maine Agri. For. Exp. Station, Orono, ME.  15 p. 

Briggs, R.S., and Lemin, R.C., Jr.  1994.  Soil drainage class effects on early response of 
balsam fir to precommercial thinning.  Soil Sci. Soc. Am. J. 58(4): 1231-1239. 

Brissette, J.C.  1996.  Effects of intensity and frequency of harvesting on abundance, 
stocking and composition of natural regeneration in the Acadian Forest of eastern 
North America.  Silva Fennica 30(2-3): 301-314. 



 

 133

Brissette, J.C., and Kenefic, L.S.  2000.  Eastern hemlock response to even- and uneven-
age management in the Acadian Forest:  Results from the Penobscot Experimental 
Forest long-term silviculture study.  Pages 23-28 in McManus, KA, Shields, KS, 
and Souto, DR, eds.  Proceedings:  Symposium on sustainable management of 
hemlock ecosystems in eastern North America (June 22-24, 1999).  Gen. Tech. 
Rep. 267.  USDA Forest Service, Northeast Research Station, Durham, NH.  237 p. 

Brissette, J.C., Frank, R.M., Jr., Stone, T.L., and Skratt, T.A.  1999.  Precommercial 
thinning in a northern conifer stand:  18-year results.  For. Chron. 75(6): 967-972. 

Brokaw, N.L., and Lent, R.A.  1999.  Vertical structure.  Pages 373-399 in Hunter, ML, 
Jr., ed.  Maintaining biodiversity in forest ecosystems.  Cambridge University 
Press, New York, NY.  698 p. 

Buongiorno, J., Dahir, S., Lu, H., Lin. C.  1994.  Tree size diversity and economic returns 
in uneven-aged forest stands.  For. Sci. 40(1): 83-103. 

Bush, R.R.  1995.  Northeastern TWIGS variant of the Forest Vegetation Simulator.  
USDA Forest Service, Forest Management Service Center.  Available online at 
http://www.fs.fed.us/fmsc/fvs/variants/ne.php. 

Calama, R. and Montero, G.  2004.  Interregional nonlinear height-diameter model with 
random coefficients for stone pine in Spain.  Can. J. For. Res. 34(1): 150-163. 

Clark, P.J., and Evans, F.C.  1954.  Distance to nearest neighbor as a measure of spatial 
relationships in populations.  Ecology 35(3): 445-453. 

Coates, K.D., Canham, C.D., Beaudet, M., Sachs, D.L., and Messier, C.  2003.  Use of a 
spatially explicit individual-tree model (SORTIE/BC) to explore the implications 
of patchiness in structurally complex forests.  For. Ecol. Manage. 186(1-3): 297-
310. 

Cressie, N.A.C.  1993.  Statistics for spatial analysis.  Revised edition.  John Wiley & 
Sons, New York, NY. 900 p. 

Curtis, R.O.  1967.  Height-diameter and height-diameter-age equations for second-
growth Douglas-fir.  For. Sci. 13(4): 365-375. 

Daggett, H.  2003.  Long-term effects of herbicide and precommercial thinning 
treatments on species composition stand structure, and net present value in 
spruce-fir stands in Maine: The Austin Pond study.  M.S. Thesis.  Dept. Forest 
Ecosystem Science, University of Maine, Orono, ME.  136 p. 

Demidenko, E.  2004.  Mixed models:  Theory and applications.  John Wiley & Sons, 
Inc., Hoboken, NJ.  704 p. 



 

 134

Diggle, P.J.  2003.  Statistical analysis of spatial point patterns.  2nd Edition.  Arnold 
Publishing, London.  159 p. 

Donnelly, K.  1978.  Simulations to determine the variance and edge-effect of total 
nearest neighbour distance.  Pages 91-95 in Hodder, I., ed.  Simulation methods in 
archaeology.  Cambridge University Press, London.  139 p. 

Ek, A.R., Birdsall, E.T., and Spears, R.J.  1981.  Total and merchantable tree height 
equations for Lake States tree species.  Staff Paper Series 27.  College of Forestry, 
University of Minnesota, St. Paul, MN.  43 p. 

Ek, A.R., Birdsall, E.T., and Spears, R.J.  1984.  A simple model for estimating total and 
merchantable tree heights.  Res. Note NC-309.  USDA Forest Service, North 
Central Forest Experiment Station, St. Paul, MN.  5 p. 

Fang, Z., and Bailey, R.L.  1998.  Height-diameter models for tropical forests on Hainan 
Island in southern China.  For. Ecol. Manage. 110(1-3): 315-327. 

Fang, Z., Bailey, R.L., and Shiver, B.D.  2001.  A multivariate simultaneous prediction 
system for stand growth and yield with fixed and random effects.  For. Sci. 47(4): 
550-562. 

Ferrari, J.B.  1999.  Fine-scale patterns of leaf litterfall and nitrogen cycling in an old-
growth forest.  Can. J. For. Res. 29(3): 291-302. 

Franklin, J.F., and Van Pelt, R.  2004.  Spatial aspects of structural complexity in old 
growth forests.  J. For. 102(3): 22-28. 

Franklin, J.F., Spies, T.A., Van Pelt, R., Carey, A.B., Thornburgh, D.A., Berg, D.R., 
Lindenmayer, D.B., Harmon, M.E., Keeton, W.S., Shaw, D.C., Bible, K., and 
Chen, J.  2002.  Disturbances and structural development of natural forest 
ecosystems with silvicultural implications, using Douglas-fir forests as an 
example.  For. Ecol. Manage. 155(1-3): 399-423. 

Fraver, S., and White, A.S.  2005.  Disturbance dynamics of old-growth Picea rubens 
forests of northern Maine.  J. Veg. Sci. 16(6): 597-610. 

Freeman, E.A., and Ford, E.D.  2002.  Effects of data quality on analysis of ecological 
pattern using the ( )dK̂  statistical function.  Ecology 83(1): 35-46. 

Frelich, L.E., Cornett, M.W., and White, M.A.  2005.  Controls and reference conditions 
in forestry:  the role of old-growth and retrospective studies.  J. For. 103(7): 
339-344. 



 

 135

Fúle, P.Z., and Covington, W.W.  1998.  Spatial patterns of Mexican pine-oak forests 
under different recent fire regimes.  Plant Ecol. 134(2): 197-209. 

Goreaud, F., and Pélissier, R.  2000.  Spatial structure analysis of heterogenous point 
patterns: examples of application to forest stands.  ADS in ADE-4.  49 p.  
Available online at http://iubio.bio.indiana.edu/soft/iubionew/molbio/dna/analysis/ 
ADE4/DocThemPDFUS/Thema81.pdf. 

Goreaud, F., and Pélissier, R.  2003.  Avoiding misinterpretation of biotic interactions 
with the intertype K12-function: population independence vs. random labelling 
hypotheses.  J. Veg. Sci. 14(5): 681-692. 

Grassi, G., Minotta, G., Giannini, R., and Bagnaresi, U.  2003.  The structural dynamics 
of managed uneven-aged conifer stands in the Italian eastern Alps.  For. Ecol. 
Manage. 185(3): 225-237. 

Gratzer, G., Canham, C., Dieckmann, U., Fischer, A., Iwasa, Y., Law, R., Lexer, M.J., 
Sandmann, H., Spies, T.A., Splechtna, B.E., and Szwagrzyk, J.  2002.  Spatio-
temporal development of forests – current trends in field methods and models.  
Oikos 107(1): 3-15. 

Greenwood, M., O’Brien, C., and McConville, D.  2003.  Factors affecting regeneration 
of red spruce and balsam fir.  Pages 32-34 in McConville, D., ed.  Cooperative 
Forestry Research Unit 2003 Annual Report.  MAFES Misc. Publ. 2684.  
Cooperative Forestry Research Unit, Orono, ME.  73 p. 

Greig-Smith, P.  1983.  Quantitative plant ecology.  3rd edition.  Blackwell Scientific, 
Oxford, England.  359 p.Greig-Smith, P., and Chadwick, M.J.  1965.  Data on 
pattern in plant communities:  III. Acadia-Capparis semi-desert scrub in the 
Sudan.  J. Ecol. 53(2): 465-474. 

Haglöf, AB.  2002.  Users guide Vertex III and Transponder T3.  Haglöf Sweden, AB, 
Långsele, Sweden.  11 p. 

Haglöf, AB.  2003.  DME users manual.  Version 1.3.  Haglöf Sweden, AB, Långsele, 
Sweden.  4 p. 

Harrod, R.J., McRae, B.H., and Hartl, W.E.  1999.  Historical stand reconstruction in 
ponderosa pine forests to guide silvicultural prescriptions.  For. Ecol. Manage. 
114(2-3): 433-446. 

Hawley, R.C., and Hawes, A.F.   1925.  Manual of forestry for the Northeastern United 
States. Vol. 1, 2nd Edition.  John Wiley & Sons, New York, NY.  281 p. 

http://iubio.bio.indiana.edu/soft/iubionew/molbio/dna/analysis/


 

 136

Homyack, J.A., Harrison, D.J., and Krohn, W.B.  2004.  Structural differences between 
precommercially thinned and unthinned conifer stands.  For. Ecol. Manage 
194(1-3):  131-143. 

Huang, S., Titus, S.J., and Wiens, D.P.  1992.  Comparison of nonlinear height-diameter 
functions for major Alberta tree species.  Can. J. For. Res. 22(9): 1297-1304. 

Hyde, P., Dubayah, R., Walker, W., Blair, J.B., Hofton, M., and Hunsaker, C.  2006.  
Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, 
SAR/InSAR, ETM+, Quickbird) synergy.  Remote Sens. Environ.  In press. 

Husch, B., Miller, C.I., and Beers, T.W.  1982.  Forest mensuration.  3rd Edition.  John 
Wiley & Sons, Inc., New York.  402 p. 

Isham, V.  1984.  Multitype Markov point processes:  some approximations.  Proc. Royal 
Soc. London, Ser. A 391: 39-53. 

Keeton, W.S.  2005.  Managing for old-growth in northern hardwood.  Pages 107-117 in 
Peterson, C.E., and Maguire, D.A., eds.  Balancing ecosystem values:  innovative 
experiments for sustainable forestry.  Gen. Tech. Rep. PNW-GTR-635.  USDA 
Forest Service, Pacific Northwest Research Station, Portland, OR.  389 p. 

Kenefic, L.S., Sendak, P.E., and Brissette, J.C.  2005a.  Comparison of fixed diameter-
limit and selection cutting in northern conifers.  North. J. Appl. For. 22(2): 77-84. 

Kenefic, L.S., White, A.S., Cutko, A.R., and Fraver, S.  2005b.  Reference stands for 
silvicultural research:  a Maine perspective.  J. For. 103(7): 363:367. 

Kenkel, N.C.  1988.  Pattern of self-thinning in jack pine: testing the random mortality 
hypothesis.  Ecology 69(4): 1017-1024. 

Kimmins, J.P.  1997.  Biodiversity and its relationship to ecosystem health and integrity.  
For. Chron. 73(2): 229-232. 

Kint, V., Van Meirvenne, M., Nachtergale, L., Geudens, G., and Lust N.  2001.  Spatial 
methods for quantifying forest stand structure development:  a comparison 
between nearest-neighbor indices and variogram analysis.  For. Sci. 49(1): 36-49. 

Koukoulas, S., and Blackburn, G.A.  2005.  Spatial relationships between tree species and 
gap characteristics in broad-leaved deciduous woodland.  J. Veg. Sci. 16(5):  
587-596. 

Kruskal, J.B.  1964.  Nonmetric multidimensional scaling: a numerical method.  
Psychometrika 29(2): 115-129. 



 

 137

Kuha, J.  2004.  AIC and BIC: Comparisons of assumptions and performance.  Soc. 
Methods & Res. 33(2): 188-229. 

Laessle, A.  1965.  Spacing and competition in natural stands of sand pine.  Ecology 
46(1-2): 65-72. 

Lähde, E., Laiho, O., Norokorpi, Y., and Saksa, T.  1999.  Stand structure as the basis of 
diversity index.  For. Ecol. Manage. 115(2): 213-220. 

Lappi, J.  1991.  Calibration of height and volume equations with random parameters.  
For. Sci. 37(3): 781-801. 

Lappi, J., and Bailey, R.I.  1988.  Height prediction model with random stand and tree 
parameters:  An alternative to traditional site index methods.  For. Sci. 34(4): 907-
927. 

Lappi, J., and Malinen, J.  1994.  Random-parameter height/age models when stand 
parameters and stand age are correlated.  For. Sci. 40(4): 715-731. 

Larsen, D.R., and Bliss, L.C.  1998.  An analysis of structure of tree seedling populations 
on a Lahar.  Landscape Ecol. 13(5): 307-322. 

Le Guerrier, C., Marceau, D.J., Bouchard, A., and Brisson, J.  2003.  A modeling 
approach to assess the long-term impact of beech bark disease in northern 
hardwood forest.  Can. J. For. Res. 33(12): 2416-2425. 

Levin, S.A.  1992.  The problem of pattern and scale in ecology.  Ecology 73(6): 1943-
1967. 

Lindenmayer, D.B., and Franklin, J.F.  2002.  Conserving forest biodiversity.  Island 
Press, Washington, D.C.  351 p. 

Lindgren, P.M.F., and Sullivan, T.P.  2001.  Influence of alternative vegetation 
management treatments on conifer plantation attributes: Abundance, species 
diversity, and structural diversity.  For. Ecol. Manage. 142(1-3): 163–182. 

Loehle, C.  2000.  Forest ecotone response to climate change: sensitivity to temperature 
response functional forms.  Can. J. For. Res. 30(10): 1632-1645. 

Lorimer, C.G.  1977.  The presettlement forest and natural disturbance cycle of 
northeastern Maine.  Ecology 58(1): 139-148. 

Lotwick, H.W., and Silverman, B.W.  1982.  Methods for analysing spatial processes of 
several types of points.  J. Royal Stat. Soc., Series B 44(3): 406-413. 



 

 138

Lynch, T.B., Holley, A.G., and Stevenson, D.J.  2005.  A random-parameter height-dbh 
model for cherrybark oak.  South. J. Appl. For. 29(3): 22-26. 

MacArthur, R.H., and MacArthur, J.W.  1961.  On bird species diversity.  Ecology 42(3): 
594-598.Marascuilo, L.A., and McSweeney, M.  1967.  Nonparametric post hoc 
comparisons for trend.  Psychol. Bull. 67: 401-412. 

Martens, S.N., Breshears, D.D., Meyer, C.W., and Barnes, F.J.  1997.  Scales of above-
ground and below-ground competition in a semi-arid woodland detected from 
spatial patterns.  J. Veg. Sci. 8(5): 655-664. 

Mast, J.N., and Veblen, T.T.  1999.  Tree spatial patterns and stand development along 
the pine-grassland ecotone in the Colorado Front Range.  Can. J. For. Res. 29(5): 
575-584. 

Mather, P.M.  1976.  Computational methods of multivariate analysis in physical 
geography.  J. Wiley & Sons, London, England.  532 p. 

McComb, W., and Lindenmayer, D.  1999.  Dying, dead, and down trees.  Pages 335-372 
in Hunter, M.L., Jr., eds.  Maintaining biodiversity in forest ecosystems.  
Cambridge University Press, Cambridge, Great Britain.  698 p. 

McCune, B., and Grace, J.B.  2002.  Analysis of ecological communities.  MjM Software 
Design, Gleneden Beach, OR.  300 p. 

McCune, B., and Mefford, M.J.  1999.  Multivariate analysis of ecological data.  Version 
4.07.  MjM Software Design, Gleneden Beach, OR. 

McElhinny, C., Gibbons, P., Brack, C., Bauhas, J.  2005.  Forest and woodland stand 
structural complexity:  its definition and measurement.  For. Ecol. Manage. 
218(1-3): 1-24 

McGaughey, R.J.  2004.  Stand Visualization System.  Version 3.30.  USDA Forest 
Service, Pacific Northwest Experiment Station.  141 p.  Available online at 
http://www.fs.fed.us/fmsc/fvs/documents/gtrs_winsvsguide.php. 

Mehtäto, L.  2004.  A longitudinal height-diameter model for Norway spruce in Finland.  
Can. J. For. Res. 34(1): 131-140. 

Ménard, A., Dubé, P., Bouchard, A., Canham, C.D., and Marceau, D.J.  2002.  
Evaluating the potential of the SORTIE forest succession model for spatio-
temporal analysis of small-scale disturbances.  Ecol. Model. 153(1): 81-96. 

Meyer, H.A.  1940.  A mathematical expression for height curves.  J. For. 38(5): 
415-420. 

http://www.fs.fed.us/fmsc/fvs/documents/gtrs_winsvsguide.php


 

 139

Moeur, M.  1993.  Characterizing spatial patterns of trees using stem-mapped data.  For. 
Sci. 39(4): 756-775. 

Montes, F., Sánchez, M., del Río, M. and Cañellas, I.  2005.  Using historic management 
records to characterize the effects of management on the structural diversity of 
forests.  For. Ecol. Manage. 207(3): 279-293. 

Motta, R. and Edouard, J.L.  2005.  Stand structure and dynamics in a mixed and 
multilayered forest in the Upper Susa Valley, Piedmont, Italy.  Can. J. For. Res. 
35(1): 21-36. 

Næsset, E., and Økland, T.  2002.  Estimating tree height and tree crown properties using 
airborne scanning laser in a boreal nature preserve.  Remote Sens. Environ. 79(1): 
105-115. 

Nanos, N., Calama, R., Montero, G., and Gil, L.  2004.  Geostatistical prediction of 
height/diameter models.  For. Ecol. Manage. 195(1-2): 221-235. 

North, M., Chen, J., Oakley, B., Song, B., Rudnicki, M., Gray, A., and Innes, J.  2004.  
Forest stand structure and pattern of old-growth western hemlock/Douglas-fir and 
mixed-conifer forests.  For. Sci. 50(3): 299-311. 

O’Hara, K.L.  1996.  Dynamics and stocking-level relationships of multi-aged ponderosa 
pine stands.  For. Sci. 42, Monograph 33.  34 p. 

O’Hara, K.L.  2001.  The silviculture of transformation – a commentary.  For. Ecol. 
Manage. 151(1-3): 81-86. 

O’Hara, K.L., and Gersonde, R.F.  2004.  Stocking control concepts in uneven-aged 
silviculture.  Forestry 77(2): 131-143. 

Oliver, C.D., and Larson, B.C.  1996.  Forest stand dynamics.  Update edition. John 
Wiley & Sons, Inc., New York, NY.  520 p. 

Pacala, S.W., Canham, C.D., and Silander, J.A.J.  1993.  Forest models defined by field 
measurements. I. The design of a northeastern forest simulator. Can. J. For. Res. 
23(10): 1980–1988. 

Pacala, S.W., Canham, C.D., Saponara, J., Silander, J.A., Jr., Kobe, R.K., and Ribbens, E.  
1996.  Forest models defined by field measurements: estimation, error analysis 
and dynamics.  Ecol. Monogr. 66(1): 1-43. 



 

 140

Palik, B.J., Mitchell, R.J., and Hiers, J.K.  2002.  Modeling silviculture after natural 
disturbance to sustain biodiversity in the longleaf pine (Pinus palustris) 
ecosystem:  Balancing complexity and implementation.  For. Ecol. Manage. 
155(1-3): 347-356. 

Papaik, M.J., Canham, C.D., Latty, E.F., and Woods, K.D.  2005.  Effects of an 
introduced pathogen on resistance to natural disturbance:  beech bark disease and 
windthrow.  Can. J. For. Res. 35(8): 1832-1843. 

Peng, C., Zhang, L., and Liu, J.  2001.  Developing and validating nonlinear height-
diameter models for major tree species of Ontario’s boreal forests.  North. J. 
Appl. For. 18(3): 87-94. 

Peterson, C.J., and Squiers, E.R.  1995.  An unexpected change in spatial pattern across 
10 years in an aspen-white pine forest.  J. Ecol. 83(5): 847-855. 

Phillips, D.L., and MacMahon, J.A.  1981.  Competition and spacing patterns in desert 
shrubs.  J. Ecol. 69(1): 97-115. 

Picket, S.T.A., and White, P.S., eds.  1985.  The ecology of natural disturbance and patch 
dynamics.  Academic Press, New York, NY.  472 p. 

Pielou, E.C.  1962.  The use of plant-to-neighbor distances for the detection of 
competition.  J. Ecol. 50(2): 357-367. 

Pielou, E.C.  1977.  Mathematical ecology.  Wiley, Oxford, United Kingdom.  385 p. 

Pinheiro, J.C., and Bates, D.M.  2000.  Mixed-effects models in S and S-PLUS.  
Springer, New York, NY.  528 p. 

Pinheiro, J.C., Bates, D.M., DebRoy, S., and Sarkar, D.  2005.  nlme: Linear and 
nonlinear mixed effects models. R package version 3.1-65.  Available online at 
http://www.R-project.org. 

Pommerening, A.  2002.  Approaches to quantifying forest structures.  Forestry 75(3):  
305-324. 

Popescu, S.C., Wynne, R.H., and Scrivani, J.A.  2004.  Fusion of small-footprint LiDAR 
and multispectral data to estimate plot-level volume and biomass in deciduous 
and pine forest in Virginia, USA.  For. Sci. 50(4): 551-565. 

Pretzsch, H.  1997.  Analysis and modeling of spatial stand structures.  Methodological 
considerations based on mixed beech-larch stands in Lower Saxony.  For. Ecol. 
Manage. 97(3): 237-253. 



 

 141

R Development Core Team.  2005.  R: A language and environment for statistical 
computing.  Version 2.2.  R Foundation for Statistical Computing, Vienna, 
Austria.  ISBN 3-900051-07-0.  Available online at http://www.R-project.org. 

Ratkowsky, D.A.  1983.  Nonlinear regression modeling: a unified practical approach.  
Marcel Dekker, Inc., New York, NY.  276 p. 

Ratkowsky, D.A., and Reedy, T.J.  1986.  Choosing near-linear parameters in the four-
parameter logistic model for radioligand and related assays.  Biometrics 42(3): 
575-582. 

Richards, F.J.  1959.  A flexible growth function for empirical use.  J. Exp. Bot. 10(29): 
290-300. 

Ripley, B.D.  1976.  The second-order analysis of stationary point processes.  J. Appl. 
Probab. 13 (2): 255-266. 

Ripley, B.D.  1977.  Modelling spatial patterns.  J. Royal Stat. Soc., Series B 39(2): 
172-212. 

Roberts, S.D., Dean, T.J., Evans, D.L., McCombs, J.W., Harrington, R.L., and Glass, 
P.A.  2005.  Estimating individual tree leaf area in loblolly pine plantations using 
LiDAR-derived measurements of height and crown dimensions.  For. Ecol. 
Manage. 213(1-3): 54-70. 

Rowlingson, B., Diggle, P., Bivand, R., Petris G., and Eglen, S.  2005.  splancs: Spatial 
and space-time point pattern analysis.  Version 2.01-16.  Available online at 
http://www.maths.lancs.ac.uk/~rowlings/Splancs/. 

Runkle, J.R.  1982.  Patterns of disturbance in some old-growth mesic forests of eastern 
North America.  Ecology 63(5):  1533-1546. 

Saunders, M.R., Wagner, R.G., and Brissette, J.  2002.  Developing metrics for 3-
dimensional forest stand structure: A test of the stand complexity index 
hypothesis.  Page 63 in Wagner, R.G., comp.  Proceedings of the Eastern 
CANUSA Forest Science Conference, October 19-20, Orono, ME.  122 p. 

Saunders, M.R., and Wagner, R.G.  2005.  Ten-year results of the Forest Ecosystem 
Reseach Program—successes and challenges.  Pages 147-153 in Peterson, C.E., 
and Maguire, D.A., eds.  Balancing ecosystem values:  innovative experiments for 
sustainable forestry.  Gen. Tech. Rep. PNW-GTR-635.  USDA Forest Service, 
Pacific Northwest Research Station, Portland, OR.  389 p. 

Schütz, J.-P.  1999.  Close-to-nature silviculture: is this concept compatible with species 
diversity?  Forestry 72(4): 359-366. 

http://www.r-project.org/
http://www.maths.lancs.ac.uk/~rowlings/Splancs/


 

 142

Sendak, P.E., Brissette, J.C., and Frank, R.M.  2003.  Silviculture affects composition, 
growth, and yield in mixed northern conifers:  40-year results from the Penobscot 
Experimental Forest.  Can. J. For. Res. 33(11): 2116-2128. 

Seymour, R.S.  1992.  The red spruce-balsam fir forest of Maine: evolution of 
silvicultural practice in response to stand development patterns and disturbances.  
Pages 217-244 in Kelty, M.J., Larson, B.C., and Oliver, C.D., eds.  The ecology 
and silviculture of mixed-species forests.  A festschrift for David M. Smith.  
Kluwer Publishers, Norwell, MA.  372 p. 

Seymour, R.S., and Hunter, M.L., Jr.  1999.  Principles of ecological forestry.  Pages 
22-61 in Hunter, M.L., Jr., eds.  Maintaining biodiversity in forest ecosystems.  
Cambridge University Press, Cambridge, Great Britain.  698 p. 

Seymour, R.S., and Kenefic, L.S.  1998.  Balance and sustainability in multiaged stands:  
a northern conifer case study.  J. For. 96(7): 12-17. 

Seymour, R.S., Guilden, J., Marshall, D., and Palik, B.  In press.  Large-scale, long-term 
silvicultural experiments in the United States.  Allgemeine Forst-und Jagdzeitung. 

Seymour, R.S., White, A.S., and deMaynadier, P.G.  2002.  Natural disturbance regimes 
in northeastern North America—evaluating silvicultural systems using natural 
scales and frequencies.  For. Ecol. Manage. 155(1-3): 357-367. 

Skarpe, C.  1991.  Spatial patterns and dynamics of woody vegetation in an arid savanna.  
J. Veg. Sci. 2(4): 565-572. 

Smith, D.M.  1962.  The practice of silviculture.  7th Edition.  John Wiley & Sons, Inc., 
New York, NY.  578 p. 

Solomon, D.S., and Gove, J.H.  1999.  Effects of uneven-aged management intensity on 
structural diversity in two major forest types in New England.  For. Ecol. 
Manage. 114(2): 265-274. 

Stamatellos, G., and Panourgias, G.  2005.  Simulating spatial distributions of forest trees 
by using data from fixed area plots.  Forestry 78(3): 305-312. 

Szwagrzyk, J., and Czerwczak, M.  1993.  Spatial patterns of trees in natural forests of 
east-central Europe.  J. Veg. Sci. 4(4): 469-476. 

Taylor, A.H., and Halpern, C.B.  1991.  The structure and dynamics of Abies magnifica 
forests in the southern Cascade Range, USA.  J. Veg. Sci. 2(2): 189-200. 



 

 143

Thomson, J.D., Weiblen, G., Thomson, B.A., Alfaro, S., and Legendre, P.  1996.  
Untangling multiple factors in spatial distributions: lilies, gophers, and rocks.  
Ecology 77(6): 1698-1715. 

Tillman, K.M., compiler.  2004.  Forest Inventory and Analysis: National core field 
guide.  Volume I:  Field data collection procedures for phase 2 plots.  Version 2.0.  
USDA Forest Service, Northeastern Research Station, Newtown Square, PA.  
252 p. 

Toumey, J.W.  1928.  The foundations of silviculture upon an ecological basis.  Volume 
1.  John Wiley & Sons, Inc., London, England.  438 p. 

Tremblay, M., Messier, C., and Marceau, D.J.  2005.  Analysis of deciduous tree species 
dynamics after a severe ice storm using SORTIE model simulations.  Ecol. 
Model. 187(2-3): 297-313. 

Trorey, L.G.  1932.  A mathematical method for the construction of diameter height 
curves based on site.  For. Chron. 8(2): 121-132. 

Turner, R.  2002.  deldir: Delaunay triangulation and Dirichlet (Voronoi) tesselation.  R 
package version 0.0-4.  Available online at http://www.math.unb.ca/~rolf/. 

Upton, G.J.G. and Fingleton, B.  1985.  Spatial data analysis by example.  Volume 1:  
Point pattern and quantitative data.  John Wiley & Sons, Inc., New York, NY.  
410 p. 

Urban, D.L., Bonan, G.B., Smith, T.H., and Shugart, H.H.  1991.  Spatial application of 
gap models.  For. Ecol. Manage. 42(1): 95-110. 

von Gadow, K., and Hui, G.  1999.  Modelling forest development.  Kluwer Academic 
Publishers, Dordrecht, The Netherlands.  213 p. 

von Oheimb, G., Westphal, C., Tempel, H., and Härdtle, W.  2005.  Structural pattern of 
a near-natural beech forest (Fagus sylvatica) (Serrahn, North-east Germany).  For. 
Ecol. Manage. 212(1-3): 253-263. 

Ward, J.S., Parker, G.R., and Ferrandino, F.J.  1996.  Long-term spatial dynamics in an 
old-growth deciduous forest.  For. Ecol. Manage. 83(3): 189-202. 

Watt, A.S.  1947.  Pattern and process in the plant community.  J. Ecol. 35(1-2): 1-22. 

Weibull, W.  1951.  A statistical distribution function of wide applicability.  J. Appl. 
Mech. 18: 293-296. 

http://www.math.unb.ca/~rolf/


 

 144

Westveld, M.  1931.  Reproduction on pulpwood lands in the Northeast.  Tech. Bul. 223.  
USDA Forest Service, Northeastern Forest Experiment Station, Amhert, MA.  
52 p. 

Wilkinson, R.C.  1983.  Leader and growth characteristics of eastern white pine 
associated with white pine weevil attack susceptibility.  Can. J. For. Res. 13(1): 
78-84. 

Williams, M.S., Patterson, P.L., and Mowrer, H.T.  2003.  Comparison of ground 
sampling methods for estimating canopy cover.  For. Sci. 49(2): 235-246. 

Williams, M.S., Williams, M.T., and Mowrer, H.T.  2001.  A boundary reconstruction 
method for circular for fixed-area plots in environmental survey.  J. Agric. Biol. 
& Environ. Stat. 6(4): 479-494. 

Willson, M.F.  1974.  Avian community organization and habitat structure.  Ecology 
55(5): 1017-1029. 

Woodall, C.W., and Graham, J.M.  2004.  A technique for conducting point pattern 
analysis of cluster plot stem-maps.  For. Ecol. Manage. 198(1-3): 31-37. 

Yu, X., Hyyppä, J., Haartinen, H., and Maltamo, M.  2004.  Automatic detection of 
harvested trees and determination of forest growth using airborne laser scanning.  
Remote Sens. Environ. 90(4): 451-462. 

Yuancai, L., and Parresol, B.R.  2001.  Remarks on height-diameter modeling.  Res. Note 
SRS-10.  USDA Forest Service, Southern Research Station, Asheville, NC.  5 p. 

Zar, J.H.  1999.  Biostatistical analysis.  4th edition.  Prentice Hall, Upper Saddle Hill, NJ.  
929 p. 

Zenner, E.K.  2000.  Do residual trees increase structural complexity in Pacific Northwest 
coniferous forests?  Ecol. Appl. 10(3): 800-810. 

Zenner, E.K.  2004.  Does old-growth condition imply high live-tree structural 
complexity?  For. Ecol. Manage. 195(1-2): 243-258. 

Zenner, E.K.  2005.  Investigating scale-dependent stand heterogeneity with structure-
area curves.  For. Ecol. Manage. 209(1-2): 87-100. 

Zenner, E.K., and Hibbs, D.E.  2000.  A new method for modeling the heterogeneity of 
forest structure.  For. Ecol. Manage. 129(1): 75-87. 



 

 145

Zhang, S., Burkhart, H.E., and Amateis, R.L.  1997.  The influence of thinning on tree 
height and diameter relationships in loblolly pine plantations.  South. J. Appl. For. 
21(4): 199-205. 

Zimble, D.A., Evans, D.L., Carlson, G.C., Parker, R.C., Grado, S.C., and Gerard, P.D.  
2003.  Characterizing vertical forest structure using small-footprint airborne 
LiDAR.  Remote Sens. Environ. 87(2-3): 171-182. 



 

 146

APPENDICES 

 



 

 147

APPENDIX A 

R CODE USED FOR MORPHING EXPERIMENTS 

The following code was used within Chapter 2 to build simulated point patterns 

(A.1), calculate the population-levels parameters of these patterns (A.2), generate sample 

plots drawn from each pattern and calculate summary statistics from each plot (A.4).  

Custom functions used within the morphing algorithm are listed in A.3. 

A.1. POINT PATTERN GENERATION 

Clustered pattern: 

# The following commands generate a point pattern using the Thomas 
# cluster process, which is a special case of the Neyman-Scott process. 
# This process generates a Poisson distribution of "parent" points, 
# from which the clustering algorithm generates a set of "offspring" 
# points.  The intensity of the points is given by BETA and the 
# intensity of the cluster centers is given by BETA.clust.  The process 
# is simulated over the extent defined by x.size and y.size. 
# 
# Outputs are BETA, BETA.clust, x.size, y.size, and sim.clu. 
 
require(spatstat,quietly=TRUE) 
require(splancs,quietly=TRUE) 
BETA<-1 
BETA.clust<-0.1 
x.size<-125 
y.size<-125 
 
 
# These commands define the average number of offspring points per 
# cluster (mu.clust) and the average spacing between clusters.  Because 
# this is a random process and the full intensity of points is not 
# assured (i.e., simulated beta could be greater or less than BETA), 
# mu.clust is inflated by 10% and then random points are deleted to get 
# simulated beta = BETA*x.size*y.size.  Sigma, or the standard 
# deviation of displacement of the offspring points from a parent 
# point, is a fraction of spacing.  This was set at spacing/3 to 
# simulate moderate clustering. 
 
mu.clust<-BETA/BETA.clust 
spacing<-(BETA.clust^(-0.5)) 
sim.clu<-rThomas(BETA.clust,spacing/3,mu.clust*1.1, 

win=owin(c(0,x.size),c(0,y.size))) 
sim.clu<-as.points(sim.clu) 
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sim.clu<-thin(sim.clu,BETA*x.size*y.size) 
sim.clu<-ppp(sim.clu[,1],sim.clu[,2],window=owin(c(0,x.size), 

c(0,y.size))) 
 
 
# This command cleans the workspace of unnecessary variables. 
 
rm(mu.clust,spacing) 

Random pattern: 

# These commands produce sim.ran, a random Poisson point pattern with 
# intensity of BETA and spatial extent of x.size by y.size. 
# 
# Output is BETA, x.size, y.size, and sim.ran. 
 
require(spatstat,quietly=TRUE) 
BETA<-1 
x.size<-125 
y.size<-125 
sim.ran<-rpoint(BETA*x.size*y.size,win=c(0,x.size,0,y.size), 

giveup=1000) 

Regular pattern: 

# These commands produce a hardcore Strauss point pattern using the 
# Metropolis- Hastings algorithm.  BETA is the intensity on a per unit 
# area basis (i.e., 0.5 = 5000 tpha).  GAMMA is the "strength" of the 
# inhibition between points over the radius IR; when GAMMA = 0, it is 
# effectively a hardcore  inhibition, and when GAMMA = 1 there is no 
# inhibition between points. HR is the hardcore radii, meaning that no 
# points occur closer than this distance apart.  I used GAMMA, IR and 
# HR of 0.75, 0.75 and 0.50, respectively, to simulate a strongly 
# regular pattern with no points closer than 0.5, or 1/2 the expected 
# point spacing, and a reduced chance that points could occur within 
# 0.50-0.75 of one another. 
# 
# Normally, the Metropolis-Hastings algorithm allows three processes of 
# point pattern generation: births, deaths, and shifts.  This can lead 
# to simulated intensities less than the desired intensities.  I fixed 
# this by turning off the births and deaths routines and conditioning 
# the model with the proper number of points, drawn from a random 
# uniform distribution. Points are only shifted in location according 
# to the GAMMA, IR, and HR in this manner.  The window size is defined 
# by x.size and y.size.  Output includes BETA, GAMMA, IR, HR, x.size, 
# y.size and sim.reg. 
 
require(spatstat,quietly=TRUE) 
BETA<-1 
GAMMA<-0.75 
IR<-0.75 
HR<-0.50 
x.size<-125 
y.size<-125 
n.start<-BETA*x.size*y.size 
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mod1<-list(cif="straush",par=list(beta=BETA,gamma=GAMMA,r=IR,hc=HR), 
w=c(0,x.size,0,y.size)) 

sim.reg<-rmh.default(model=mod1,start=list(n.start=n.start),control = 
list(p=1,periodic=TRUE,ptypes=BETA,nrep=1e5,nverb=1e4)) 

 
 
# This command cleans the workspace of unnecessary variables. 
 
rm(n.start,mod1) 

A.2. POPULATION-LEVEL STATISTICS AND FIGURES 

# OVERALL SUMMARY: 
# This file calculates the Clark-Evans statistic (CE.popl & CEp.popl) 
# and the K-function (KHAT.popl) for the entire extent/simulated point 
# population (mat).  It also calculates a Monte-Carlo estimate for  
# KHAT.popl with nsim1 simulations of the K-function calculated from  
 
# CSR populations.  The entire set of simulations is in the KSIM object 
# with $L95 and $U95 defining 95% Monte-Carlo envelopes. 
# 
# Output includes CE.popl, CEp.popl, KHAT.popl, and KSIM.  This file 
# also creates two summary plots for the population: 
#     A) * pt map -> map of point pattern 
#     B) * Lhat popl -> Lhat for pattern with 95% Monte-Carlo intervals 
# Both are saved as *.pdf files. 
# 
# NOTE: Most computations are done with the splancs, not the spatstat, 
# package of R.  This is done to speed computations of K (and 
# associated) functions of the large simulated point patterns since 
# they do not need to be calculated over the entire spatial extent. 
# K (and other  similar) functions in spatstat cannot be calculated on 
# limited extents. 
 
 
# These commands load the splancs package and reformat the input matrix 
# mat. 
 
require(splancs,quietly=TRUE,warn.conflicts=FALSE) 
mat.1<-as.points(mat) 
 
 
# The following commands convert the window defined in the ppp.matrix 
# to a polygon that can be used by splancs. 
 
xmin<-mat$window$xrange[1] 
xmax<-mat$window$xrange[2] 
ymin<-mat$window$yrange[1] 
ymax<-mat$window$yrange[2] 
poly<-matrix(c(xmin,xmax,xmax,xmin,ymin,ymin,ymax,ymax),nrow=4,ncol=2) 
 
 
# The following commands calculate the Clark-Evans Positioning Index 
# (CE.popl) that describes overall spatial pattern of a point dataset. 
# The CE calculation assumes a square polygon.  CEp.popl gives the 
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# p-value associated with CE.popl. 
 
nn.dist<-nndist(mat.1,method="C") 
CEnum<-mean(nn.dist) 
CEden<-0.5*sqrt(BETA) + 0.0514*(2*(xmax+ymax))/(BETA*x.size*y.size) + 

0.041*(2*(xmax+ymax))/(BETA*x.size*y.size)^(1.5) 
CE.popl<-CEnum/CEden 
CEp.popl<-2*pnorm(abs(CEnum-CEden)/(0.26136/(BETA*sqrt(x.size*y.size))) 

,lower.tail=FALSE) 
 
 
# The following commands calculate the K-function on a range of (0,15). 
# The envelopes are created from nsim1 (set to 1000 currently)  
# simulations of a completely random spatial process (i.e., a Poisson 
# process).  95% Monte Carlo confidence envelope for KHAT.popl are  
# calculated from the sorted output (KSIMS)at each interval in Krange 
# and are listed as KSIMS$L95 and KSIMS$U95. 
 
Krange<-seq(0,15,0.1) 
KHAT.popl<-khat(mat.1,poly,Krange,newstyle=FALSE) 
KHAT.popl<-data.frame(dis=Krange,khat=KHAT.popl) 
nsim1<-1000 
KSIMS1<-matrix(rep(0,length(KHAT.popl$dis)*1000), 

nrow=length(KHAT.popl$dis),ncol=nsim1) 
for (i in 1:nsim1) { 

KSIMS1[,i]<-khat(csr(poly,dim(mat.1)[1]),poly,Krange,newstyle=FALSE) 
cat("Simulation # ",i,"\n") 

} 
KSIMS2<-KSIMS1 
for (i1 in 1:length(Krange)) { 

KSIMS2[i1,]<-sort(KSIMS1[i1,],method="quick") 
} 
L95<-KSIMS2[,ceiling(nsim1*0.025)] 
U95<-KSIMS2[,ceiling(nsim1*0.975)] 
KSIMS<-data.frame(dis=Krange,nsim=KSIMS1,L95,U95) 
 
 
# The following commands produce a point map for the point process. 
 
par(mar=c(0.5,0.5,0.5,0.5)) 
plot(mat,pch=20,cex=0.4,main=NULL) 
rect(0,0,x.size,y.size,lwd=4) 
savePlot(filename=paste("## ENTER FILE NAME HERE ##",base.name," pt 

map",sep=""),type="pdf") 
 
 
# The following commands produce a plot of the L-function (a 
# transformed form of the K-function equal to dist - sqrt(K-value/pi), 
# for all distances) along with the 95% Monte Carlo simulation 
# envelopes. 
 
par(mar=c(6.5,6.5,1,1)) 
par(mgp=c(4,1,0)) 
par(xaxs="i") 
par(yaxs="i") 
x.ticks<-seq(0,15,3) 
x.labels<-c("0","3","6","9","12","15")  
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maxabsy<-max(abs(sqrt(KHAT.popl$khat/pi)-KHAT.popl$dis), 
abs(sqrt(KSIMS$L95/pi)-KHAT.popl$dis),abs(sqrt(KSIMS$U95/pi)-
KHAT.popl$dis))  

y.ticks<-seq(min(-0.2,-round(maxabsy*1.1,1)),max(0.2, 
round(maxabsy*1.1,1)),0.1) 

y.labels<-as.character(y.ticks) 
plot(KHAT.popl$dis,sqrt(KHAT.popl$khat/pi)-KHAT.popl$dis,type="l", 

xlab=expression(bolditalic(d)),ylab=expression(bold(hat(L))[popl] 
(bolditalic(d))),ylim=range(y.ticks),lwd=5,bty="l",cex.lab=1.75,axes
=F) 

lines(KSIMS$dis,sqrt(KSIMS$L95/pi)-KSIMS$dis,type="l",lwd=4,lty="11") 
lines(KSIMS$dis,sqrt(KSIMS$U95/pi)-KSIMS$dis,type="l",lwd=4,lty="11") 
axis(side=1,at=x.ticks,labels=x.labels,font=2,lwd=3,cex.axis=1.5) 
axis(side=2,at=y.ticks,labels=y.labels,font=2,lwd=3,cex.axis=1.5,las=1) 
savePlot(filename=paste("##ENTER FILE NAME HERE##",base.name," Lhat 

popl",sep=""),type="pdf") 
 
 
# The last commands remove the excess variables. 
 
rm(mat.1,xmin,xmax,ymin,ymax,poly,nn.dist,CEnum,CEden,i,i1,L95,U95,x.ti

cks,x.labels,y.ticks,y.labels,maxabsy,nsim1,Krange,KSIMS1,KSIMS2) 

A.3. FUNCTION DEFINITIONS USED FOR SAMPLE PLOT CALCULATIONS 

# The following function morphs the coordinates in the circular plot 
# defined by mat into a square plot to be used for torodial edge 
# correction.  It uses the algorithn developed by Williams, M. S., 
# M. T. Williams, and H. T. Mowrer. 2001. A boundary reconstruction  
# method for circular fixed-area plots in environmental survey.  J.  
# Agric. Biol. and Environ. Stat. 6(4).  The first two columns of mat 
# should consist of x and y coordinates of points relative to plot 
# center.  All columns beyond column 2 are assumed to be marks for the 
# points, and carried through calculations unaltered. 
 
morph<-function(mat) { 

 
# Checks for proper format of the matrix or data frame. 
 
if(!(is.matrix(mat) | is.data.frame(mat))) { 

stop("Input must be a matrix or data frame and have at least 2 
columns.")  

} 
if(!is.vector(c(mat[,1:2]),mode="numeric")) { 

if(!is.data.frame(mat)) { 
stop("The first two columns must contain numeric X & Y 

coordinates and not any marks.") 
} 

} 
 
 
# Converts Cartesian coordinates to polar coordinates. 
 
r<-sqrt(mat[,1]^2+mat[,2]^2) 
theta<-atan2(mat[,2],mat[,1]) 
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# Rescales polar coordinates for “morphing” transformation. 
 
s<-sqrt(pi)*r 
theta<-ifelse(theta <= 0, theta+2*pi, theta) 
 
 
# Calculation of numerous dummy variable that identify which 
# part of the circle that the point is in. 
 
DUMMY<-matrix(c(rep(0,10*length(s))),ncol=10) 
DUMMY[,1]<-ifelse(theta > 0.00*pi & theta <= 0.75*pi,1,0) 
DUMMY[,2]<-ifelse(theta > 1.75*pi & theta <= 2.00*pi,1,0) 
DUMMY[,3]<-ifelse(theta > 0.75*pi & theta <= 1.75*pi,1,0) 
DUMMY[,4]<-ifelse(theta > 0.25*pi & theta <= 0.75*pi,1,0) 
DUMMY[,5]<-ifelse(theta > 1.25*pi & theta <= 1.75*pi,1,0) 
DUMMY[,6]<-ifelse(theta > 0.25*pi & theta <= 1.25*pi,1,0) 
DUMMY[,7]<-ifelse(theta > 1.25*pi & theta <= 2.00*pi,1,0) 
DUMMY[,8]<-ifelse(theta > 0.00*pi & theta <= 0.25*pi,1,0) 
DUMMY[,9]<-ifelse(theta > 0.75*pi & theta <= 1.25*pi,1,0) 
DUMMY[,10]<-ifelse(theta > 1.75*pi & theta <= 2.00*pi,1,0) 
 
 
# Equations for the morphing transformation. 
 
morph.x<-((DUMMY[,1]+DUMMY[,2]-DUMMY[,3])*s/2) - (DUMMY[,4]* 

(2*s*(theta-0.25*pi))/pi) + (DUMMY[,5]*(2*s*(theta-1.25*pi))/pi) 
morph.y<-((DUMMY[,6]-DUMMY[,7])*s/2)+(DUMMY[,8]*2*s*theta/pi)-

(DUMMY[,9]*(2*s*(theta-0.75*pi))/pi) + (DUMMY[,10]*(2*s*(theta-
1.75*pi))/pi) 

 
 
# Output is the morphed coordinates along with associated marks 
# (columns 3+ in mat). 
 
if (dim(mat)[2]>2) { 

morph<-cbind(morph.x,morph.y,mat[,-(1:2)]) 
} else morph<-cbind(morph.x,morph.y) 

} 
 
 
# The following function demorphs coordinates back to the original 
# Cartesian space. 
 
demorph<-function(mat) { 

 
# Checks for proper format of the matrix or data frame. 
 
if(!(is.matrix(mat) | is.data.frame(mat))) { 

stop("Input must be a matrix or data frame and have at least 2 
columns.") 

} 
if(!is.vector(c(mat[,1:2]),mode="numeric")) { 

if(!is.data.frame(mat)) { 
stop("The first two columns must contain numeric X & Y 

coordinates and not any marks.") 
} 

} 
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# Calculation of dummy variables to define which part of the morphed 
# set space a particular point is within. 
 
r2<-sqrt(mat[,1]^2+mat[,2]^2) 
theta2<-atan2(mat[,2],mat[,1]) 
theta2<-ifelse(theta2 <= 0, theta2+2*pi, theta2) 
DUMMY2<-matrix(c(rep(0,5*dim(mat)[1])),ncol=5) 
DUMMY2[,1]<-ifelse(theta2 > 0.00*pi & theta2 <= 0.25*pi,1,0) 
DUMMY2[,2]<-ifelse(theta2 > 0.75*pi & theta2 <= 1.25*pi,1,0) 
DUMMY2[,3]<-ifelse(theta2 > 1.75*pi & theta2 <= 2.00*pi,1,0) 
DUMMY2[,4]<-ifelse(theta2 > 0.25*pi & theta2 <= 0.75*pi,1,0) 
DUMMY2[,5]<-ifelse(theta2 > 1.25*pi & theta2 <= 1.75*pi,1,0) 
 
 
# Equations for the demorphing transformation. 
 
new.r<-abs((2*mat[,1]*pi^(-0.5))*(DUMMY2[,1]+DUMMY2[,2]+DUMMY2[,3]) 

+ (2*mat[,2]*pi^(-0.5))*(DUMMY2[,4]+DUMMY2[,5])) 
new.theta<-(0.25*pi*mat[,2]/mat[,1])*(DUMMY2[,1]+DUMMY2[,3]) + 

(1.00*pi+0.25*pi*mat[,2]/mat[,1])*(DUMMY2[,2])+(0.50*pi-
0.25*pi*mat[,1]/mat[,2])*(DUMMY2[,4])+(1.50*pi-
0.25*pi*mat[,1]/mat[,2])*(DUMMY2[,5]) 

new.theta<-ifelse(mat[,1]==0 & mat[,2]==0,0,new.theta) 
new.theta<-ifelse(mat[,1]==0 & (mat[,2]>0 | mat[,2]<0),(0.50*pi-

(0.25*pi*mat[,1]/mat[,2]))*DUMMY2[,4]+(1.50*pi-
(0.25*pi*mat[,1]/mat[,2]))*DUMMY2[,5],new.theta) 

new.theta<-ifelse(mat[,2]==0 & (mat[,1]>0 | mat[,1]<0),(0.25*pi* 
mat[,2]/mat[,1])*DUMMY2[,3]+(1.00*pi+(0.25*pi*mat[,2]/mat[,1]))* 
DUMMY2[,2],new.theta) 

 
 
# Converts points to Cartesian coordinates and attaches marks. 
 
x<-c(new.r*cos(new.theta)) 
y<-c(new.r*sin(new.theta)) 
if (dim(mat)[2]>2) { 

demorph<-cbind(x,y,mat[,-(1:2)]) 
} else demorph<-cbind(x,y) 

} 
 
 
 
# The following function torodial wraps square or rectangular point  
# patterns.  There are three components. First, mat defines a point  
# pattern with any associated marks.  It must have at least two columns 
# that define x and y coordinates.  Second, dim defines the dimensions 
# of the point pattern in the form (xmin,xmax,ymin,ymax).  It defaults 
# to the minimums and maximums of the x and y coordinates in mat. 
# Third, rep defines the number of replicated point patterns to do in 
# the x and y directions.  It defaults to a 3 x 3 array.  Components of 
# rep must be odd and integers. 
 
torus.wrap<-function(mat,dim,repl = c(3,3)) { 

 
# Checks the inputs to the function for proper format. 
 
if(!(is.matrix(mat) | is.data.frame(mat))) { 
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stop("Input must be a matrix or data frame and have at least 2 
columns.") 

} 
if(!is.vector(c(mat[,1:2]),mode="numeric")) { 

if(!is.data.frame(mat)) { 
stop("The first two columns must contain numeric X & Y 

coordinates and not any marks.") 
} 

} 
if(missing(dim)) { 

dim<-c(min(mat[,1]),max(mat[,1]),min(mat[,2]),max(mat[,2])) 
} 
if(!is.vector(dim,mode="numeric") | length(dim)!=4) { 

stop("Supplied dim must be a vector in form (xmin,xmax,ymin,ymax) 
defining the bounding box for the point pattern. The default 
is the min and max of the X & Y coordinates in mat.") 

} 
if(!is.vector(repl,mode="numeric") | length(repl)!=2) { 

stop("Supplied repl must be a vector in form (x,y) where x is the 
number of replicated point patterns in the horizontal 
direction and y is replicated point patterns in the vertical 
direction.  The default is (3,3).") 

} 
x.exp<-(repl[1]-1)/2 
y.exp<-(repl[2]-1)/2 
if(x.exp-floor((repl[1]-1)/2)!=0 | y.exp-floor((repl[2]-1)/2)!=0) { 

stop("Repl must contain only odd integers.") 
} 
 
 
# Commands to create the torodial wrap. 
 
x.size<-dim[2]-dim[1] 
y.size<-dim[4]-dim[3] 
mat.exp<-integer() 
for(i in 1:x.exp) { 

mat.neg<-mat 
mat.neg[,1]<-mat[,1]-i*x.size 
mat.pos<-mat 
mat.pos[,1]<-mat[,1]+i*x.size 
mat.exp<-rbind(mat.exp,mat.neg,mat.pos) 

} 
mat<-rbind(mat,mat.exp) 
mat.exp2<-integer() 
for(j in 1:y.exp) { 

mat.neg2<-mat 
mat.neg2[,2]<-mat[,2]-j*y.size 
mat.pos2<-mat 
mat.pos2[,2]<-mat[,2]+j*y.size 
mat.exp2<-rbind(mat.exp2,mat.neg2,mat.pos2) 

} 
mat<-rbind(mat,mat.exp2) 

} 
 
# The following function torodial wraps square or rectangular point 
# patterns derived from multiple plots.  This differs only from 
# torus.wrap in that mat must contain a minimum of 3 columns, with the 
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# first column indicating what plot the X and Y coordinates (columns 2  
# and 3, respectively) are from.  Columns 4+ are assumed to be marks. 
# Plot numbers do not need to be consecutive or sorted.  The item  
# base defines which plot is the base plot to wrap around; the  
# function then randomly picks with replacement among all plots 
# (including the base plot) to wrap with.  Output is an expanded matrix 
# with all border plot and base plot points and marks; the base plot 
# info is not sorted to the top of the matrix. 
# 
# Refer to torus.wrap for definitions and limitations for dim and repl.  
 
torus.wrap2<-function(mat,base,dim,repl = c(3,3)) { 

 
# Checks the inputs to the function for proper format. 
 
if(!(is.matrix(mat) | is.data.frame(mat))) { 

stop("Input must be a matrix or data frame and have at least 3 
columns.") 

} 
if(!is.vector(c(mat[,1:3]),mode="numeric")) { 

if(!is.data.frame(mat)) { 
stop("The first three columns must contain plot numbers, 

numeric X & Y coordinates, and not any marks.") 
} 

} 
if(missing(base)) { 

stop("Must provide plot number for center plot (base).") 
} 
if(missing(dim)) { 

dim<-c(min(mat[,2]),max(mat[,2]),min(mat[,3]),max(mat[,3])) 
} 
if(!is.vector(dim,mode="numeric") | length(dim)!=4) { 

stop("Supplied dim must be a vector in form (xmin,xmax,ymin,ymax) 
defining the plot size for the point pattern. The default is 
the min and max of the X & Y coordinates across all plots 
listed in mat.") 

} 
if(!is.vector(repl,mode="numeric") | length(repl)!=2) { 

stop("Supplied repl must be a vector in form (x,y) where x is the 
number of replicated point patterns in the horizontal 
direction and y is replicated point patterns in the vertical 
direction.  The default is (3,3).") 

} 
x.exp<-(repl[1]-1)/2 
y.exp<-(repl[2]-1)/2 
if(x.exp-floor((repl[1]-1)/2)!=0 | y.exp-floor((repl[2]-1)/2)!=0) { 

stop("Repl must contain only odd integers.") 
} 
 
 
# Commands to create the torodial wrap. 
 
x.size<-dim[2]-dim[1] 
y.size<-dim[4]-dim[3] 
p.nums<-mat[duplicated(mat[,1])==FALSE,1] 
p.sams<-sample(p.nums,repl[1]*repl[2],replace=TRUE) 
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coor.adj<-matrix(c(x.size*sort(c(rep(-x.exp:x.exp,repl[2]))), 
y.size*c(rep(-y.exp:y.exp,repl[1]))),ncol=2) 

p.sams[coor.adj[,1]==0 & coor.adj[,2]==0]<-base 
mat.exp<-integer() 
for(i in 1:length(p.sams)) { 

mat2<-mat[mat[,1]==p.sams[i],] 
if(!(is.data.frame(mat2) | is.matrix(mat2))) { 

mat2<-t(as.matrix(mat2)) 
} else mat2<-mat2 
mat2[,2]<-mat2[,2]+coor.adj[i,1] 
mat2[,3]<-mat2[,3]+coor.adj[i,2] 
mat.exp<-rbind(mat.exp,mat2) 

} 
return(mat.exp) 

} 
 
 
 
# The following function trims points from a sample plot that are 
# outside a specified distance (rad) from plot center.  Although  
# designed specifically for circular plots, it could be used with  
# any plot shape. X and Y coordinates should be in the first two  
# columns. Output is a matrix for the smaller, trimmed circular  
# plot that includes all marks. 
 
cplot.trim<-function(mat,rad) { 

if(!(is.matrix(mat) | is.data.frame(mat))) { 
stop("Input must be a matrix or data frame and have at least 2 

columns.") 
} 
if(!is.vector(c(mat[,1:2]),mode="numeric")) { 

if(!is.data.frame(mat)) { 
stop("The first two columns must contain numeric X & Y 

coordinates and not any marks.") 
} 

} 
if(missing(rad)) { 

stop("Must supply max distance from plot center for trimming 
(rad).") 

} 
return(mat[sqrt(mat[,1]^2+mat[,2]^2)<=rad,]) 

} 
 
 
 
# The following function selects nsim circular plots of radius rad 
# from a rectangular point pattern defined by mat.  It works if mat 
# is a point pattern, a point object, a data frame, or a matrix.  
# Dimensions of the point pattern are given by dim; it defaults to 
# the maximum and minimum X & Y coordinates. If the point pattern is 
# buffered (buf), plot centers will not be selected closer to the edge 
# than this distance.  It defaults to rad. Nonuniform buffers are given 
# as a vector starting with the buffer on the top of the pattern and 
# working clockwise. Nsim defaults to 1 plot. If existing plot centers 
# are to be used, cen is used; cen should be formated as a data 
# frame or matrix with X & Y coordinates in columns 1 and 2, with 
# existing plot names or numbers given in column 3.  Minn sets the 
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# minimum plot sample size desired; i.e., the plot will be resampled if 
# n < minn. Results are returned in a list, with $plot.centers giving 
# the plot centers and plot sample size, $raw.points giving the X & Y 
# coordinates and any associated marks by plot, and $centered.points 
# giving X & Y coordinates relative to plot center and any associated 
# marks by plot. These three components are data frames within the 
# list. 
 
cplot.sel<-function(mat,rad,dim,nsim=1,buf=rad,cen=NULL,minn=NULL) { 

 
# The commands load the required R packages “spatstat” and  
# “splancs”. 
 
require(spatstat,quietly=TRUE) 
require(splancs,quietly=TRUE) 
 
 
# The following commands check the format of the inputs, and set  
# defaults if they are missing. 
 
if(missing(rad)) { 

stop("Sample plot size not specified (rad).") 
} 
if(is.ppm(mat) | is.ppp(mat)) { 

dim<-c(min(corners(mat)$x),max(corners(mat)$x), 
min(corners(mat)$y),max(corners(mat)$y)) 

if(is.marked(mat)) { 
marks<-c(mat$marks) 
mat<-as.points(mat) 
mat<-data.frame(x=mat$x,y=mat$y,marks=marks) 

} 
mat<-data.frame(x=mat$x,y=mat$y) 

} else if(missing(dim)) { 
dim<-c(min(mat[,1]),max(mat[,1]),min(mat[,2]),max(mat[,2])) 

} else if(!is.vector(dim,mode="numeric") | length(dim)!=4) { 
stop("Supplied dim must be a vector in form (xmin,xmax,ymin,ymax) 

defining the size for the point pattern.  The default is the 
min and max of the X & Y coordinates across all points listed 
in mat.") 

} 
if(!is.vector(c(mat[,1:2]),mode="numeric")) { 

if(!is.data.frame(mat)) { 
stop("The first two columns must contain numeric X & Y 

coordinates and not any marks.") 
} 

} 
if(!is.vector(buf,mode="numeric") | !length(buf)==4) { 

ifelse(length(buf)==1,buf<-c(buf,buf,buf,buf),stop("Buffer format 
not correct.")) 

} 
 
 
# The following statments either use the points listed in cen or  
# chooses a set of random points within dim. 
 
if(!is.null(cen)) { 

if(!mode(as.matrix(cen[,1:2]))=="numeric") { 
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stop("Existing plot centers (cen) not formatted correctly.") 
} 
plot.cen<-data.frame(x=cen[,1],y=cen[,2],plot=cen[,3]) 
nsim<-dim(cen)[1] 

} else plot.cen<-data.frame(x=runif(nsim,dim[1]+buf[4],dim[2]-
buf[2]),y=runif(nsim,dim[1]+buf[4],dim[2]-buf[2])) 

 
 
# These commands create the plots and return the original 
# coordinates and coordinates centered on the plot coordinates. 
 
plot.pts<-data.frame() 
plot.pts2<-data.frame() 
n<-integer() 
for(i in 1:nsim) { 

pts<-mat[c((mat[,1]-plot.cen[i,1])^2 + (mat[,2]-plot.cen[i,2])^2 
<= rad^2),] 

pts2<-pts 
pts2[,1]<-pts2[,1]-plot.cen[i,1] 
pts2[,2]<-pts2[,2]-plot.cen[i,2] 
n<-c(n,dim(pts)[1]) 
if(!is.null(minn)) { 

while(n[i]<minn) { 
plot.cen$x[i]<-runif(1,dim[1]+buf[4],dim[2]-buf[2]) 
plot.cen$y[i]<-runif(1,dim[1]+buf[4],dim[2]-buf[2]) 
pts<-mat[c((mat[,1]-plot.cen[i,1])^2 + (mat[,2]-

plot.cen[i,2])^2 <= rad^2),] 
pts2<-pts 
pts2[,1]<-pts2[,1]-plot.cen[i,1] 
pts2[,2]<-pts2[,2]-plot.cen[i,2] 
n[i]<-dim(pts)[1] 

} 
} 
if(!is.null(cen)) { 

plot.names<-rep(plot.cen[i,3],n[i]) 
} else plot.names<-rep(i,n[i]) 
pts<-cbind(data.frame(plot=plot.names),pts) 
pts2<-cbind(data.frame(plot=plot.names),pts2) 
plot.pts<-rbind(plot.pts,pts) 
plot.pts2<-rbind(plot.pts2,pts2) 

} 
plot.cen<-cbind(plot.cen,n=n) 
row.names(plot.pts)<-c(1:dim(plot.pts)[1]) 
row.names(plot.pts2)<-c(1:dim(plot.pts2)[1]) 
res<-list(sum.info=plot.cen,raw.pts=plot.pts,cent.pts=plot.pts2) 
return(res) 

} 

A.4. SAMPLE PLOT GENERATION AND SUMMARY STATISTICS CALCULATION 

# OVERALL SUMMARY: 
# The following commands randomly select plots from a sample space 
# (mat). The plot size (plot.size) and number of simulations (nsim) 
# must also be specified.  There are several outputs, corresponding to 
# different border corrections: 
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#     a) plots.r --> list of plot centers of radius r and associated  
#        points (uncentered and re-centered at zero) 
#     b) plots.r2 --> list of plot centers of radius 2r and associated 
#        points (uncentered and re-centered at zero) 
#     c) plots.r2.same --> data frame of plots of radius r morphed to a 
#        radius 2r, using the exact same plot to morph with (a true 
#        torodial wrap) 
#     d) plots.r2.diff --> data frame of plots of radius r morphed to a 
#        radius 2r, using different plots to morph with 
#     e) plots.r2.rand --> data frame of plots of radius r surrounded 
#        by a ring with randomly located points to achieve simulated 
#        plot of radius 2r 
# 
# Beyond these point patterns, the commands also summarize the point 
# patterns using the Clark-Evans statistic and K functions: 
#     f) CE --> Clark Evans statistics (plot level [$data] and summary 
#        statistics [$sum.stat, $bon.p.counts]) as follows: 
#        1) .ra --> plot radius r & Donnelly correction 
#        2) .rb --> plot radius r with morphed ring for edge correction 
#        3) .r2 --> plot radius 2r & Donnelly correction 
#        4) .r2.same -> from c) above & Donnelly correction 
#        5) .r2.diff -> from d) above & Donnelly correction 
#        6) .r2.rand -> from e) above & Donnelly correction 
#     g) KHAT --> K-functions (plot level and summary statistics as 
#        listed data frame for each below) 
#        1) .r.unc --> plot radius r & uncorrected for edge effects 
#        2) .r.bor --> plot radius r with morphed ring for edge 
#           correction 
#        3) .r.rip --> plot radius r with Ripley's edge correction 
#           technique 
#        4) .r2 --> plot radius 2r and Ripley's edge correction 
#           technique 
#        5) .r2.same --> from c) above and Ripley's edge correction 
#           technique 
#        6) .r2.diff --> from d) above and Ripley's edge correction 
#           technique 
#        7) .r2.rand --> from e) above and Ripley's edge correction 
#           technique 
 
 
# These first commands load the spatstat and splancs packages and the 
# custom functions used for the morphing procedures. 
 
require(spatstat,quietly=TRUE) 
require(splancs,quietly=TRUE,warn.conflicts=FALSE) 
source("Morphed Functions.txt") 
 
 
# The following commands determine the coordinates of the marked points 
# using different assumptions.  These are: 
#     A) plots.r$cent.pts --> sample plot of radius r.  Note that all 
#        selected plots have a minimum of 10 points.  This was done to 
#        assure enough points for K-analysis.  
#     B) plots.r2$cent.pts --> sample plot of radius 2r.  This has the 
#        same plot centers as (A). 
#     C) plots.r2.same --> morphed plot of radius 2r using the plot 
#        itself for morphing. 
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#     D) plots.r2.diff --> morphed plot of radius 2r using 8 different 
#        plots for morphing the base plot. 
#     E) plots.r2.rand --> sample plot of radius r surrounded by a 3n 
#        ring of randomly located points at a distance between r and 
#        2r.  This is similar to what SVS uses to spatially inflate a 
#        plot. 
# All 5 objects are formated similarly as a data frame with the plot 
# ($plot) and the x- ($x) and y- ($y) coordinates.  (D) slightly 
# differs in that $ori.plot is used to keep track of what plot was used 
# to torodial wrap with.  (C), (D) and (E) also include a mark ($r) to 
# indicate which points are at the original scale and unmorphed (i.e., 
# they are in the 1*rad inner plot). 
# 
# Note because of randomization, only (C) and (E) will have a sample 
# size 4 times that of the original plot listed in (A)! 
 
rad<-(plot.size/pi)^0.5 
plots.r<-cplot.sel(mat,rad,buf=12.5,nsim=nsim,minn=10) 
plots.r2<-cplot.sel(mat,rad*2,cen=data.frame(plots.r$sum.info[,-3] 

,plot=c(1:dim(plots.r$sum.info)[1]))) 
plots.morph<-plots.r$cent.pts 
for(i in 1:nsim) { 

mor<-morph(plots.morph[plots.morph[,1]==i,-1]) 
plots.morph[plots.morph[,1]==i,-1]<-mor 

} 
plots.torus<-integer() 
for(i2 in 1:nsim) { 

torus<-torus.wrap(plots.morph[plots.morph[,1]==i2,-1],c(rep(c(-0.5* 
rad*sqrt(pi),0.5*rad*sqrt(pi)),2))) 

torus<-cbind(plot=c(rep(i2,dim(torus)[1])),torus) 
plots.torus<-rbind(plots.torus,torus) 

} 
row.names(plots.torus)<-c(1:dim(plots.torus)[1]) 
plots.demorph<-plots.torus 
for(i3 in 1:nsim) { 

demor<-demorph(plots.torus[plots.torus[,1]==i3,-1]) 
plots.demorph[plots.demorph[,1]==i3,-1]<-demor 

} 
plots.r2.same<-plots.demorph[sqrt(plots.demorph[,2]^2 + 

plots.demorph[,3]^2) <=2*rad,] 
row.names(plots.r2.same)<-c(1:dim(plots.r2.same)[1]) 
r.in1<-ifelse(sqrt(plots.r2.same[,2]^2 + plots.r2.same[,3]^2)<=rad,1,0) 
plots.r2.same<-cbind(plots.r2.same,r=r.in1) 
plots.torus2<-integer() 
for(i4 in 1:nsim) { 

torus2<-torus.wrap2(plots.morph,i4,c(rep(c(-0.5*rad*sqrt(pi),0.5* 
rad*sqrt(pi)),2))) 

torus2<-cbind(tmp=rep(i4,dim(torus2)[1]),torus2) 
plots.torus2<-rbind(plots.torus2,torus2) 

} 
plots.demorph2<-plots.torus2 
for(i5 in 1:nsim) { 

demor2<-demorph(plots.torus2[plots.torus2[,1]==i5,-(1:2)]) 
plots.demorph2[plots.demorph2[,1]==i5,-(1:2)]<-demor2 

} 
plots.r2.diff<-plots.demorph2[sqrt(plots.demorph2[,3]^2 + 

plots.demorph2[,4]^2)<=2*rad,] 
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row.names(plots.r2.diff)<-c(1:dim(plots.r2.diff)[1]) 
plots.r2.diff<-data.frame(plot=plots.r2.diff$tmp,plots.r2.diff[,3: 

dim(plots.r2.diff)[2]],ori.plot=plots.r2.diff$plot) 
r.in2<-ifelse(sqrt(plots.r2.diff[,2]^2 + plots.r2.diff[,3]^2)<=rad,1,0) 
plots.r2.diff<-cbind(plots.r2.diff,r=r.in2) 
plots.r2.rand<-plots.r$cent.pts 
for(i6 in 1:nsim) { 

n6<-3*dim(plots.r2.rand[plots.r2.rand[,1]==i6,])[1] 
ring<-matrix(c(runif(n6,0,2*pi),runif(n6,rad,2*rad)),ncol=2) 
ring<-data.frame(plot=rep(i6,n6),x=ring[,2]*cos(ring[,1]),y=ring[,2] 

*sin(ring[,1])) 
plots.r2.rand<-rbind(plots.r2.rand,ring) 

} 
plots.r2.rand<-plots.r2.rand[order(plots.r2.rand$plot),] 
row.names(plots.r2.rand)<-c(1:dim(plots.r2.rand)[1]) 
r.in3<-ifelse(sqrt(plots.r2.rand[,2]^2 + plots.r2.rand[,3]^2)<=rad,1,0) 
plots.r2.rand<-cbind(plots.r2.rand,r=r.in3) 
 
 
# The following commands calculate Clark-Evans (CE) statistics for the 
# various point patterns.  The output is a list with three parts.  The 
# first part is a data frame ($data) with plot level estimates of the 
# following: 
#     1) plot --> plot number 
#     2) n.r --> n of (A) 
#     3) CE.ra --> CE statistic for (A) 
#     4) CEp.ra --> p-value associated with (3) 
#     5) CE.rb --> CE statistic for (A) using (C) for edge correction 
#     6) CEp.rb --> p-value associated with (5) 
#     7) n.r2 --> n of (B) 
#     8) CE.r2 --> CE statistic for (B) 
#     9) CEp.r2 --> p-value associated with (6) 
#     10) n.r2.same --> n of (C) 
#     11) CE.r2.same --> CE statistic for (C) 
#     12) CEp.r2.same --> p-value associated with (9) 
#     13) n.r2.diff --> n of (D) 
#     14) CE.r2.diff --> CE statistic for (D) 
#     15) CEp.r2.diff --> p-value associated with (13) 
#     16) n.r2.rand --> n of (E) 
#     17) CE.r2.rand --> CE statistic for (E) 
#     18) CEp.r2.rand --> p-value associated with (15) 
# All CEs except #5 are edge-corrected with the Donnelly (1978)  
# technique.  The second part is a data frame ($sum.stat) that contains  
# the mean, standard deviation, maximum, and minimum of columns 2-13 
# above.  The third part is a data frame ($bon.p.counts) that counts 
# the number of times the p-value of a calculated CE (the individual 
# plot values given in columns 4, 6, 9, 12, 15 and 18 above) falls 
# within Bonferronized error regions, i.e. alpha/nsim. 
 
CE<-data.frame(plot = integer(),n.r = integer(),CE.ra = integer(,CEp.ra 

= integer(),CE.rb = integer(),CEp.rb = integer() ,n.r2 = integer(), 
CE.r2 = integer(),CEp.r2 = integer(),n.r2.same = integer(), 
CE.r2.same = integer(),CEp.r2.same = integer(),n.r2.diff = 
integer(), CE.r2.diff = integer(),CEp.r2.diff = integer(),n.r2.rand 
= integer(),CE.r2.rand = integer(),CEp.r2.rand = integer()) 

for(i7 in 1:nsim) { 
CE[i7,1]=i7 
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CE$n.r[i7]<-plots.r$sum.info$n[i7] 
CE$n.r2[i7]<-plots.r2$sum.info$n[i7] 
CE$n.r2.same[i7]<-dim(plots.r2.same[plots.r2.same[,1]==i7,])[1] 
CE$n.r2.diff[i7]<-dim(plots.r2.diff[plots.r2.diff[,1]==i7,])[1] 
CE$n.r2.rand[i7]<-dim(plots.r2.rand[plots.r2.rand[,1]==i7,])[1] 
num.ra<-mean(nndist(plots.r$cent.pts[plots.r$cent.pts[,1]==i7,2:3], 

method="C")) 
den.ra<-(0.5*sqrt(pi*rad^2/CE$n.r[i7]))+(0.0514*2*pi*rad/CE$n.r[i7]) 

+(0.041*2*pi*rad/(CE$n.r[i7]^1.5)) 
inners<-plots.r2.same[plots.r2.same[,1]==i7 & plots.r2.same[,4]==1, 

2:3] 
outers<-plots.r2.same[plots.r2.same[,1]==i7 & plots.r2.same[,4]!=1, 

2:3] 
inn.out<-data.frame(inn=nndist(inners,method="C"),out=n2dist(outers, 

inners)$dists) 
num.rb<-mean(inn.out[matrix(c(1:dim(inn.out)[1],max.col(-inn.out)), 

ncol=2)]) 
den.rb<-1/(2*sqrt(CE$n.r[i7]/plot.size)) 
num.r2<-mean(nndist(plots.r2$cent.pts[plots.r2$cent.pts[,1]==i7, 

2:3],method="C")) 
den.r2<-(0.5*sqrt(4*pi*rad^2/CE$n.r2[i7])) + (0.0514*4*pi*rad/ 

CE$n.r2[i7]) + (0.041*4*pi*rad/(CE$n.r2[i7]^1.5)) 
num.r2.same<-mean(nndist(plots.r2.same[plots.r2.same[,1]==i7,2:3], 

method="C")) 
den.r2.same<-(0.5*sqrt(4*pi*rad^2/CE$n.r2.same[i7])) + (0.0514*4*pi* 

rad/CE$n.r2.same[i7]) + (0.041*4*pi*rad/(CE$n.r2.same[i7]^1.5)) 
num.r2.diff<-mean(nndist(plots.r2.diff[plots.r2.diff[,1]==i7,2:3], 

method="C")) 
den.r2.diff<-(0.5*sqrt(4*pi*rad^2/CE$n.r2.diff[i7])) + (0.0514*4*pi* 

rad/CE$n.r2.diff[i7]) + (0.041*4*pi*rad/(CE$n.r2.diff[i7]^1.5)) 
num.r2.rand<-mean(nndist(plots.r2.rand[plots.r2.rand[,1]==i7,2:3], 

method="C")) 
den.r2.rand<-(0.5*sqrt(4*pi*rad^2/CE$n.r2.rand[i7])) + (0.0514*4*pi* 

rad/CE$n.r2.rand[i7]) + (0.041*4*pi*rad/(CE$n.r2.rand[i7]^1.5)) 
CE$CE.ra[i7]<-num.ra/den.ra 
CE$CE.rb[i7]<-num.rb/den.rb 
CE$CE.r2[i7]<-num.r2/den.r2 
CE$CE.r2.same[i7]<-num.r2.same/den.r2.same 
CE$CE.r2.diff[i7]<-num.r2.diff/den.r2.diff 
CE$CE.r2.rand[i7]<-num.r2.rand/den.r2.rand 
c.ra<-2.15866844*(num.ra-den.ra)*CE$n.r[i7]/rad 
c.rb<-((num.rb-den.rb)*CE$n.r[i7]*plot.size^-0.5)/0.26136 
c.r2<-1.07933422*(num.r2-den.r2)*CE$n.r2[i7]/rad 
c.r2.same<-1.07933422*(num.r2.same-den.r2.same)*CE$n.r2.same[i7]/rad 
c.r2.diff<-1.07933422*(num.r2.diff-den.r2.diff)*CE$n.r2.diff[i7]/rad 
c.r2.rand<-1.07933422*(num.r2.rand-den.r2.rand)*CE$n.r2.rand[i7]/rad 
CE$CEp.ra[i7]<-pnorm(-abs(c.ra),lower.tail=TRUE)+pnorm(abs(c.ra), 

lower.tail=FALSE) 
CE$CEp.rb[i7]<-pnorm(-abs(c.rb),lower.tail=TRUE)+pnorm(abs(c.rb), 

lower.tail=FALSE) 
CE$CEp.r2[i7]<-pnorm(-abs(c.r2),lower.tail=TRUE)+pnorm(abs(c.r2), 

lower.tail=FALSE) 
CE$CEp.r2.same[i7]<-pnorm(-abs(c.r2.same),lower.tail=TRUE) + 

pnorm(abs(c.r2.same),lower.tail=FALSE) 
CE$CEp.r2.diff[i7]<-pnorm(-abs(c.r2.diff),lower.tail=TRUE) + 

pnorm(abs(c.r2.diff),lower.tail=FALSE) 



 

 163

CE$CEp.r2.rand[i7]<-pnorm(-abs(c.r2.rand),lower.tail=TRUE) + 
pnorm(abs(c.r2.rand),lower.tail=FALSE) 

} 
CE.sum<-rbind(colMeans(CE[,-1]),sd(CE[,-1]),cummin(CE[,-1])[nsim,], 

cummax(CE[,-1])[nsim,]) 
rownames(CE.sum)<-c("mean","sd","min","max") 
p.counts<-as.data.frame(matrix(rep(0,24),ncol=6),row.names=c("0.00 - 

0.01","0.01 - 0.05","0.05 - 0.10","0.10 - 1.00")) 
colnames(p.counts)<-c("ra","rb","r2","r2.same","r2.diff","r2.rand") 
p.counts[,1]<-as.matrix(hist(CE$CEp.ra,breaks=c(0,0.01/nsim,0.05/nsim, 

0.1/nsim,1),plot=FALSE)$counts) 
p.counts[,2]<-as.matrix(hist(CE$CEp.rb,breaks=c(0,0.01/nsim,0.05/nsim, 

0.1/nsim,1),plot=FALSE)$counts) 
p.counts[,3]<-as.matrix(hist(CE$CEp.r2,breaks=c(0,0.01/nsim,0.05/nsim, 

0.1/nsim,1),plot=FALSE)$counts) 
p.counts[,4]<-as.matrix(hist(CE$CEp.r2.same,breaks=c(0,0.01/nsim, 

0.05/nsim,0.1/nsim,1),plot=FALSE)$counts) 
p.counts[,5]<-as.matrix(hist(CE$CEp.r2.diff,breaks=c(0,0.01/nsim, 

0.05/nsim,0.1/nsim,1),plot=FALSE)$counts) 
p.counts[,6]<-as.matrix(hist(CE$CEp.r2.rand,breaks=c(0,0.01/nsim, 

0.05/nsim,0.1/nsim,1),plot=FALSE)$counts) 
CE<-list(data=CE,sum.stat=CE.sum,bon.p.counts=p.counts) 
 
 
# The following commands calculate the K values for the different 
# morphing procedures.  Small plots ($r) are calculated over the common 
# range of 0.5*rad; large plots ($r2) at 1.0*rad.  The output is a list 
# (KHAT) with the data frames corresponding to each morphing option 
# ($r2 for (B), $r2.same for (C), $r2.diff for (D), and $r2.rand for 
# (E)).  All data frames have columns to the far right that give the 
# weighted mean, weighted sd, min, and max of the K values for that 
# option. 
 
poly.r<-matrix(c(rad*cos(seq(-pi,pi,length=1000)),rad*sin(seq(-pi,pi, 

length=1000))),ncol=2) 
poly.r2<-matrix(c(2*rad*cos(seq(-pi,pi,length=1000)),2*rad*sin(seq(-pi, 

pi,length=1000))),ncol=2) 
range.r<-seq(0,round(0.5*rad,1),0.1) 
range.r2<-seq(0,round(rad,1),0.1) 
tmp1<-data.frame(dist=range.r,plot=matrix(rep(0,nsim*length(range.r)), 

ncol=nsim)) 
tmp2<-data.frame(dist=range.r2,plot=matrix(rep(0,nsim* 

length(range.r2)),ncol=nsim)) 
KHAT<-list(r.unc=tmp1,r.bor=tmp1,r.rip=tmp1,r2=tmp2,r2.same=tmp2, 

r2.diff=tmp2,r2.rand=tmp2) 
for(i8 in 1:nsim) { 

tmp3<-pairdist(plots.r$cent.pts[plots.r$cent.pts$plot==i8,2:3], 
method="C") 

tmp3<-c(tmp3) 
tmp3<-tmp3[order(tmp3)] 
tmp3<-tmp3[tmp3!=0] 
KHAT$r.unc[,i8+1]<-plt(tmp3,range.r)*plot.size* 

(plots.r$sum.info$n[i8]/(plots.r$sum.info$n[i8]-1)) 
tmp4<-pairdist(plots.r2.same[plots.r2.same$plot==i8,2:3],method="C") 
tmp4<-tmp4[,1:plots.r$sum.info$n[i8]] 
tmp4<-c(tmp4) 
tmp4<-tmp4[order(tmp4)] 
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tmp4<-tmp4[tmp4!=0] 
KHAT$r.bor[,i8+1]<-plt(tmp4,range.r)*plot.size*4 
KHAT$r.rip[,i8+1]<-khat(plots.r$cent.pts[plots.r$cent.pts[,1]==i8, 

2:3],poly.r,range.r) 
KHAT$r2[,i8+1]<-khat(plots.r2$cent.pts[plots.r2$cent.pts[,1]==i8, 

2:3],poly.r2,range.r2) 
KHAT$r2.same[,i8+1]<-khat(plots.r2.same[plots.r2.same[,1]==i8, 

2:3],poly.r2,range.r2) 
KHAT$r2.diff[,i8+1]<-khat(plots.r2.diff[plots.r2.diff[,1]==i8, 

2:3],poly.r2,range.r2) 
KHAT$r2.rand[,i8+1]<-khat(plots.r2.rand[plots.r2.rand[,1]==i8, 

2:3],poly.r2,range.r2) 
} 
.mean<-(as.matrix(KHAT$r.unc[,-1]) %*% as.matrix(CE$data$n.r))/ 

sum(CE$data$n.r) 
.sd<-apply(KHAT$r.unc[,-1],2,function(x) (x-.mean)^2) 
.sd<-(.sd %*% as.matrix(CE$data$n.r))/sum(CE$data$n.r) 
KHAT$r.unc<-data.frame(KHAT$r.unc,mean=.mean,sd=.sd, 

min=apply(KHAT$r.unc[,-1],1,min),max=apply(KHAT$r.unc[,-1],1,max)) 
.mean<-(as.matrix(KHAT$r.bor[,-1]) %*% as.matrix(CE$data$n.r))/ 

sum(CE$data$n.r) 
.sd<-apply(KHAT$r.bor[,-1],2,function(x) (x-.mean)^2) 
.sd<-(.sd %*% as.matrix(CE$data$n.r))/sum(CE$data$n.r) 
KHAT$r.bor<-data.frame(KHAT$r.bor,mean=.mean,sd=.sd, 

min=apply(KHAT$r.bor[,-1],1,min),max=apply(KHAT$r.bor[,-1],1,max)) 
.mean<-(as.matrix(KHAT$r.rip[,-1]) %*% as.matrix(CE$data$n.r))/ 

sum(CE$data$n.r) 
.sd<-apply(KHAT$r.rip[,-1],2,function(x) (x-.mean)^2) 
.sd<-(.sd %*% as.matrix(CE$data$n.r))/sum(CE$data$n.r) 
KHAT$r.rip<-data.frame(KHAT$r.rip,mean=.mean,sd=.sd, 

min=apply(KHAT$r.rip[,-1],1,min),max=apply(KHAT$r.rip[,-1],1,max)) 
.mean<-(as.matrix(KHAT$r2[,-1]) %*% as.matrix(CE$data$n.r2))/ 

sum(CE$data$n.r2) 
.sd<-apply(KHAT$r2[,-1],2,function(x) (x-.mean)^2) 
.sd<-(.sd %*% as.matrix(CE$data$n.r2))/sum(CE$data$n.r2) 
KHAT$r2<-data.frame(KHAT$r2,mean=.mean,sd=.sd,min=apply(KHAT$r2[,-1],1, 

min),max=apply(KHAT$r2[,-1],1,max)) 
.mean<-(as.matrix(KHAT$r2.same[,-1]) %*% as.matrix(CE$data$n.r2.same))/ 

sum(CE$data$n.r2.same) 
.sd<-apply(KHAT$r2.same[,-1],2,function(x) (x-.mean)^2) 
.sd<-(.sd %*% as.matrix(CE$data$n.r2.same))/sum(CE$data$n.r2.same) 
KHAT$r2.same<-data.frame(KHAT$r2.same,mean=.mean,sd=.sd,min= 

apply(KHAT$r2.same[,-1],1,min),max=apply(KHAT$r2.same[,-1],1,max)) 
.mean<-(as.matrix(KHAT$r2.diff[,-1]) %*% as.matrix(CE$data$n.r2.diff))/ 

sum(CE$data$n.r2.diff) 
.sd<-apply(KHAT$r2.diff[,-1],2,function(x) (x-.mean)^2) 
.sd<-(.sd %*% as.matrix(CE$data$n.r2.diff))/sum(CE$data$n.r2.diff) 
KHAT$r2.diff<-data.frame(KHAT$r2.diff,mean=.mean,sd=.sd,min= 

apply(KHAT$r2.diff[,-1],1,min),max=apply(KHAT$r2.diff[,-1],1,max)) 
.mean<-(as.matrix(KHAT$r2.rand[,-1]) %*% as.matrix(CE$data$n.r2.rand))/ 

sum(CE$data$n.r2.rand) 
.sd<-apply(KHAT$r2.rand[,-1],2,function(x) (x-.mean)^2) 
.sd<-(.sd %*% as.matrix(CE$data$n.r2.rand))/sum(CE$data$n.r2.rand) 
KHAT$r2.rand<-data.frame(KHAT$r2.rand,mean=.mean,sd=.sd,min= 

apply(KHAT$r2.rand[,-1],1,min),max=apply(KHAT$r2.rand[,-1],1,max)) 
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# This last command cleans the workspace of all temporary variables, 
# thereby outputting only the 7 items listed in the SUMMARY above. 
 
rm(.mean,.sd,c.r2,c.r2.diff,c.r2.rand,c.r2.same,c.ra,c.rb,CE.sum,demor, 

demor2,den.r2,den.r2.diff,den.r2.rand,den.r2.same,den.ra,den.rb,i, 
i2,i3,i4,i5,i6,i7,i8,inn.out,inners,mor,n6,num.r2,num.r2.diff, 
num.r2.rand,num.r2.same,num.ra,num.rb,outers,p.counts,plots.demorph, 
plots.demorph2,plots.morph,plots.torus,plots.torus2,poly.r,poly.r2, 
r.in1,r.in2,r.in3,rad,range.r,range.r2,ring,tmp1,tmp2,tmp3,tmp4, 
torus,torus2) 
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APPENDIX B 

STEM MAPS OF FOREST SERVICE PLOTS 

The following stem maps represent the 7883 tree positions measured on 50 plots 

of the U.S. Forest Service’s long-term silvicultural study at the Penobscot Experimental 

forest in Bradley, ME.  Maps are paired and listed by treatment, then sequentially by 

compartment and plot.  The top map refers to the actual tree positions measured during 

Summer 2001-2002, while the bottom map is a representation of the plot after using the 

morphing algorithm to scale the 0.020 ha (0.05 ac) inner, small tree (1.2 – 11.4 cm 

diameter at breast height [DBH]) subplot to the 0.081 ha (0.20 ac) large tree (>11.4 cm 

DBH) plot.  CE refers to the Clark-Evans statistic (Clark and Evans 1954) for the small 

trees only.  See Section 2.6 for more details. 

These maps exclude trees for which there were errors made collecting the 

positional data.  There also are a small number of trees that had been measured by the 

Forest Service in their inventories that were determined to be outside of the plot or 

subplot boundaries during my survey.  In total, there are about 69 trees excluded. 
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Figure B.1. Example realization of the morphing algorithm used to scale each of the 50 

U.S. Forest Service plots at the Penobscot Experimental Forest in Bradley, ME, measured 

within this study.  Each realization uses all subplots within a given compartment for 

wrapping within the morphing algorithmn.  The Clark-Evans statistic (CE) is listed for 

both pre-scaled (top figure on each page) and post-scaled spatial patterns (bottom figure 

on each page).  Symbol size is proportional to the natural log of diameter at breast height 

(DBH), softwood species are represented by circles and hardwood species by squares, 

and trees >11.4 cm DBH are colored grey, not black.  The overall legend for this figure is 

shown above, with symbols and distances to scale. 
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Treatment: Natural Area Control 
Compartment: 32A 
Plot: 13 
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Treatment: Natural Area Control 
Compartment: 32A 
Plot: 24 

 

 

Figure B.1.  Continued.
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Treatment: Natural Area Control 
Compartment: 32A 
Plot: 42 

 

 

Figure B.1.  Continued.
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Treatment: Natural Area Control 
Compartment: 32A 
Plot: 43 

 

 

Figure B.1.  Continued.
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Treatment: Natural Area Control 
Compartment: 32A 
Plot: 54 

 

 

Figure B.1.  Continued.
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Treatment: Natural Area Control 
Compartment: 32B 
Plot: 23 

 

 

Figure B.1.  Continued.
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Treatment: Natural Area Control 
Compartment: 32B 
Plot: 32 

 

 

Figure B.1.  Continued.
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Treatment: Natural Area Control 
Compartment: 32B 
Plot: 73 

 

 

Figure B.1.  Continued.
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Treatment: Natural Area Control 
Compartment: 32B 
Plot: 74 

 

 

Figure B.1.  Continued.
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Treatment: Natural Area Control 
Compartment: 32B 
Plot: 83 

 

 

Figure B.1.  Continued.
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Treatment: Commercial Clearcut 
Compartment: 8 
Plot: 14 

 

Figure B.1.  Continued.
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Treatment: Commercial Clearcut 
Compartment: 8 
Plot: 23 

 

 

Figure B.1.  Continued.
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Treatment: Commercial Clearcut 
Compartment: 8 
Plot: 31 

 

 

Figure B.1.  Continued.
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Treatment: Commercial Clearcut 
Compartment: 8 
Plot: 52 

 

 

Figure B.1.  Continued.
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Treatment: Commercial Clearcut 
Compartment: 8 
Plot: 71 

 

 

Figure B.1.  Continued.
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Treatment: Commercial Clearcut 
Compartment: 22 
Plot: 22 

 

 

Figure B.1.  Continued.
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Treatment: Commercial Clearcut 
Compartment: 22 
Plot: 32 

 

 

Figure B.1.  Continued.
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Treatment: Commercial Clearcut 
Compartment: 22 
Plot: 34 

 

 

Figure B.1.  Continued.
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Treatment: Commercial Clearcut 
Compartment: 22 
Plot: 42 

 

 

Figure B.1.  Continued.
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Treatment: Commercial Clearcut 
Compartment: 22 
Plot: 53 

 

 

Figure B.1.  Continued.
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Treatment: Fixed Diameter Limit 
Compartment: 4 
Plot: 14 

 

 

Figure B.1.  Continued.
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Treatment: Fixed Diameter Limit 
Compartment: 4 
Plot: 21 

 

 

Figure B.1.  Continued.
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Treatment: Fixed Diameter Limit 
Compartment: 4 
Plot: 31 

 

 

Figure B.1.  Continued.
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Treatment: Fixed Diameter Limit 
Compartment: 4 
Plot: 42 

 

 

Figure B.1.  Continued.
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Treatment: Fixed Diameter Limit 
Compartment: 4 
Plot: 44 

 

 

Figure B.1.  Continued.
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Treatment: Fixed Diameter Limit 
Compartment: 15 
Plot: 15 

 

 

Figure B.1.  Continued.



 

 194

Treatment: Fixed Diameter Limit 
Compartment: 15 
Plot: 22 

 

 

Figure B.1.  Continued.
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Treatment: Fixed Diameter Limit 
Compartment: 15 
Plot: 32 

 

 

Figure B.1.  Continued.
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Treatment: Fixed Diameter Limit 
Compartment: 15 
Plot: 41 

 

 

Figure B.1.  Continued.
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Treatment: Fixed Diameter Limit 
Compartment: 15 
Plot: 45 

 

 

Figure B.1.  Continued.
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Treatment: Five-Year Selection 
Compartment: 9 
Plot: 14 

 

 

Figure B.1.  Continued.
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Treatment: Five-Year Selection 
Compartment: 9 
Plot: 23 

 

 

Figure B.1.  Continued.
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Treatment: Five-Year Selection 
Compartment: 9 
Plot: 34 

 

 

Figure B.1.  Continued.
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Treatment: Five-Year Selection 
Compartment: 9 
Plot: 43 

 

 

Figure B.1.  Continued.



 

 202

Treatment: Five-Year Selection 
Compartment: 9 
Plot: 44 

 

 

Figure B.1.  Continued.
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Treatment: Five-Year Selection 
Compartment: 16 
Plot: 12 

 

 

Figure B.1.  Continued.
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Treatment: Five-Year Selection 
Compartment: 16 
Plot: 22 

 

 

Figure B.1.  Continued.
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Treatment: Five-Year Selection 
Compartment: 16 
Plot: 31 

 

 

Figure B.1.  Continued.
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Treatment: Five-Year Selection 
Compartment: 16 
Plot: 44 

 

 

Figure B.1.  Continued.
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Treatment: Five-Year Selection 
Compartment: 16 
Plot: 56 

 

 

Figure B.1.  Continued.
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Treatment: Three-stage Shelterwood w/Spacing 
Compartment: 29A 
Plot: 31 

 

 

Figure B.1.  Continued.
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Treatment: Three-stage Shelterwood w/Spacing 
Compartment: 29A 
Plot: 32 

 

 

Figure B.1.  Continued.
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Treatment: Three-stage Shelterwood w/Spacing 
Compartment: 29A 
Plot: 41 

 

 

Figure B.1.  Continued.
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Treatment: Three-stage Shelterwood w/Spacing 
Compartment: 29A 
Plot: 52 

 

 

Figure B.1.  Continued.
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Treatment: Three-stage Shelterwood w/Spacing 
Compartment: 29A 
Plot: 61 

 

 

Figure B.1.  Continued.
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Treatment: Three-stage Shelterwood w/o Spacing 
Compartment: 29B 
Plot: 11 

 

 

Figure B.1.  Continued.
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Treatment: Three-stage Shelterwood w/o Spacing 
Compartment: 29B 
Plot: 12 

 

 

Figure B.1.  Continued.
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Treatment: Three-stage Shelterwood w/o Spacing 
Compartment: 29B 
Plot: 22 

 

 

Figure B.1.  Continued.
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Treatment: Three-stage Shelterwood w/o Spacing 
Compartment: 29B 
Plot: 24 

 

 

Figure B.1.  Continued.
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Treatment: Three-stage Shelterwood w/o Spacing 
Compartment: 29B 
Plot: 35 

 

 

Figure B.1.  Concluded. 
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APPENDIX C  

BOOTSTRAPPED ( )dL̂  FUNCTIONS OF FOREST SERVICE 

COMPARTMENTS 

The following figures are bootstrapped ( )dL̂  functions, a transformed version of 

the ( )dK̂  function (Besag 1977), for spatial pattern within 10 management compartments 

of the U.S. Forest Service’s long-term silvicultural study at the Penobscot Experimental 

forest in Bradley, ME.  Spatial pattern for each inventory period since 1974 was 

reconstructed using both ground measurements of all live and any relocated dead stems, 

and simulated positions of missing dead stems.  Further, since the USFS uses a nested 

plot design, reconstructions extrapolate the pattern measured within the sapling plots 

(0.020 ha for stems between 1.2 and 11.4 cm diameter at breast height [dbh = 1.35 m]) to 

the large tree plots (0.081 ha for stems > 11.4 cm dbh).  Details of the reconstruction 

algorithm are given in Section 3.3.4. 

Each graph summarizes spatial pattern across 100 realizations of each of 5 plots 

in every management compartment by inventory combination.  Therefore, each graph 

represents approximately 500 simulations of pattern, either of all saplings and large trees 

or of only large trees.  Reconstructions with less than 5 stems were discarded from spatial 

analyses; this was common for large tree simulations and resulted in no estimation of 

( )dL̂  for the shelterwood compartments (29A and 29B) during some inventory cycles. 
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A permutation-based approach was taken to summarize ( )dK̂  for each 

compartment.  Following Diggle (2003), a weighted average of the individual estimates 

of ( )dKij
ˆ  was calculated as: 

( ) ( ) ∑∑∑∑
= == =

=
p

i

r

j
ij

p

i

r

j
ijij

pp

ndKndK
1 11 1

ˆˆ  [C.1] 

where p is the number of plots in a compartment, rp is the realizations for each plot p, and 

n is the number of trees in realization r of plot p.  The sampling variance of ( )dK̂  was 

calculated from 1000 bootstrapped samples of ( )dK *ˆ  defined as: 

( ) ( ) ∑∑
==

=
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k
k
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k
kk ndKndK

11

* ˆˆ  [C.2] 

where the )(ˆ dKk  are sampled at random with replacement from all kji =× realizations 

in the compartment (Diggle 2003).  Bootstrapped 95% confidence intervals of ( )dK̂  

were calculated using ±1.96 standard errors. 

To test the departure of ( )dK̂  from a random spatial pattern, 95% confidence 

envelopes of complete spatial randomness (csr) were developed from 1000 simulations of 

a Poisson pattern across a 0.081 ha circular plot and at a density equal to the average stem 

density for the management compartment in that inventory cycle.  This density was 

calculated directly from the tree list for an inventory and was thus not affected by the 

variation in density observed within realizations from the reconstruction algorithm.  

Separation of the 95% confidence intervals for csr and ( )dK̂  were used as a threshold for 

significantly clustered or uniform spatial pattern.  This information is summarized in 

Table 3.4. 
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Figure C.1.  Bootstrapped ( )dL̂  functions for the U.S. Forest Service compartments at 

the Penobscot Experimental Forest in Bradley, ME.  Values at each inventory are 

displayed and separately for all trees measured (≥ 1.3 cm diameter at breast height [dbh]; 

left column) and large trees (> 11.4 cm dbh; right column).  Positive and negative values 

of ( )dL̂  represent clustered and uniformed spatial patterns, respectively.  Mean and 95% 

confidence intervals of ( )dL̂  are represented by heavy black and dotted lines, 

respectively.  The 95% confidence envelope of csr is indicated by a red, dotted and 

dashed line.  ( )dL̂  = 0 is indicated by the light red solid line. 



 

 221

NATURAL AREA CONTROL (NA) 
Compartment 32A 

Date  All Measured Trees  Trees >11.4 cm dbh 
1975 

1980 

1984 
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Date  All Measured Trees  Trees >11.4 cm dbh 
1989 

1993 

1999 

Figure C.1. Continued. 
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Date  All Measured Trees  Trees >11.4 cm dbh 
2001 

Compartment 32B 

1975 

1980 

Figure C.1. Continued. 
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Date  All Measured Trees  Trees >11.4 cm dbh 
1984 

1989 

1993 

Figure C.1. Continued. 
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Date  All Measured Trees  Trees >11.4 cm dbh 
1999 

2001 

Figure C.1. Continued. 
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COMMERCIAL CLEARCUT (CC) 
Compartment 8 

Date  All Measured Trees  Trees >11.4 cm dbh 
1974 

1977 

1982 

Figure C.1. Continued. 
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Date  All Measured Trees  Trees >11.4 cm dbh 
1983  

1987  

1992 

Figure C.1. Continued. 
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Date  All Measured Trees  Trees >11.4 cm dbh 
1998 

2001 

Compartment 22 

1977 

Figure C.1. Continued. 
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Date  All Measured Trees  Trees >11.4 cm dbh 
1982 

1988 

1989 

Figure C.1. Continued. 
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Date  All Measured Trees  Trees >11.4 cm dbh 
1992 

1998 

2002 

Figure C.1. Continued. 
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FIXED-DIAMETER LIMIT (DL) 
Compartment 4 

Date  All Measured Trees  Trees >11.4 cm dbh 
1977 

1982 

1987 

Figure C.1. Continued. 
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Date  All Measured Trees  Trees >11.4 cm dbh 
1992 

1994 

1999 

Figure C.1. Continued. 
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Date  All Measured Trees  Trees >11.4 cm dbh 
2002 

Compartment 15 

1977 

1982 

Figure C.1. Continued. 
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Date  All Measured Trees  Trees >11.4 cm dbh 
1986 

1992 

1996 

Figure C.1. Continued. 
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Date  All Measured Trees  Trees >11.4 cm dbh 
2001 

2002 

Figure C.1. Continued. 



 

 236

FIVE-YEAR SELECTION SYSTEM (5S) 
Compartment 9 

Date  All Measured Trees  Trees >11.4 cm dbh 
1974 

1978 

1978 

Figure C.1. Continued. 
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Date  All Measured Trees  Trees >11.4 cm dbh 
1983 

1984 

1988 

Figure C.1. Continued. 
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Date  All Measured Trees  Trees >11.4 cm dbh 
1989 

1993 

1994 

Figure C.1. Continued. 
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Date  All Measured Trees  Trees >11.4 cm dbh 
1998 

1999 

2001 

Figure C.1. Continued. 
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Compartment 16 

Date  All Measured Trees  Trees >11.4 cm dbh 
1977 

1981 

1982 

Figure C.1. Continued. 
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Date  All Measured Trees  Trees >11.4 cm dbh 
1986 

1987 

1991 

Figure C.1. Continued. 
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Date  All Measured Trees  Trees >11.4 cm dbh 
1991 

1996 

1997 

Figure C.1. Continued. 
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Date  All Measured Trees  Trees >11.4 cm dbh 
2001 

2002 

Figure C.1. Continued. 
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THREE-STAGE SHELTERWOOD (SW) 
Compartment 29A (w/PCT) 

Date  All Measured Trees  Trees >11.4 cm dbh 
1975  

1977  

1982  

Figure C.1. Continued. 
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Date  All Measured Trees  Trees >11.4 cm dbh 
1984  

1987 

1991 

Figure C.1. Continued. 
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Date  All Measured Trees  Trees >11.4 cm dbh 
2002 

Compartment 29B (w/o PCT) 

1975  

1977  

Figure C.1. Continued. 
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Date  All Measured Trees  Trees >11.4 cm dbh 
1982  

1985  

1987 

Figure C.1. Continued. 
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Date  All Measured Trees  Trees >11.4 cm dbh 
1991 

2002 

Figure C.1. Concluded. 
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