# Aspen silviculture



#### **Tony D'Amato**

**UNIVERSITY** Rubenstein School of Environment & **Natural Resources University of Vermont** 



#### Outline



- Review of aspen silvics
- Overview of general silvicultural approaches for aspen-dominated stands
- Production and ecologically-oriented aspen silviculture
  Final points



## Aspen silvics





## **Aspen silvics**



| Species         | Shade<br>tolerance | Effective rotation ages | Site requirements                                                    |
|-----------------|--------------------|-------------------------|----------------------------------------------------------------------|
| Big-tooth aspen | Very intolerant    | 50-70                   | High; best development<br>on well-drained loamy<br>sands/sandy loams |
| Quaking aspen   | Very intolerant    | 40-50, 50-60            | Low; best development on sandy and silt loams                        |

- Aspen requires disturbance across space and time to maintain dominance on a site
  - Large openings (> 1 acre)
  - Shorter rotations to maintain rootstocks
- Aspen dominance on a particular site does not always indicate it is a "good site" (i.e., SI <u>></u> 70 ft) to promote aspen







## Silvics of primary species

- Primary modes of reproduction
  - Wind-dispersed seed
    - Seed dispersal between May-June (often miles)
    - Good seed years every 4-5 years
    - Limited longevity (2-4 weeks)
    - Requires moist, mineral soil seedbed







## Silvics of primary species

Primary modes of reproduction

#### – <u>Root suckers</u>

- Arise from adventitious buds in roots
- Stimulated by decrease in auxin from parent stem
- Require warm (> 55°F), aerated soil conditions
- Faster early growth than regeneration from seedling origin (inherit root system and carbohydrates from parent tree)







- Aspen begets aspen
  - If objectives involve naturally regenerating aspendominated stand, at least 10-20 ft<sup>2</sup>/ac of overstory aspen is needed (~50 TPA across site)





#### Coppice system for aspen

- Sucker point of origin requires consideration to ensure success
  - Most suckers initiate from roots within <u>3 inches</u> of soil surface
    - Avoid causing damage to parent root systems
    - Harvest under frozen or dry soil conditions







#### Coppice system for aspen

- Clearcut harvest original stand
  - Maximize resources for suckers and minimize hormonal control of parent stems
  - Fall/Winter harvest will also maximize root carbohydrate stores





#### Coppice system for aspen

- Minimum stocking two-years after harvesting is 4-5,000 stems per acre (can be as many as 70,000)
- If after 10 years, stocking is not adequate, shearing has proven useful to improve sucker density
- Return at age 40-60 and repeat coppice sequence







#### Intermediate treatments

- Pre-commercial thinning (site index 80 or greater)
- Applied to 8-10 year old stands
  - Alternating 6.5 x 8 ft rows with shearing blade
  - Crop-tree approach leaving 1200-1500 stems





#### Intermediate treatments

- Commercial thinning (site index 80 or greater)
  - Traditionally applied at ages 25-30 in stands with at least 125 ft<sup>2</sup>/acre with residual densities of 70-80 ft<sup>2</sup>/acre
  - Potential for greater product recovery (7-15 cds per acre)
  - High risk of stem damage







## **Production & ecological approaches**



## ≻<u>Hybrid aspen</u>

- Cross between quaking aspen and European aspen (*Populus tremula*)
  - Greater growth (4-10xs) and disease resistance than native aspen due to heterosis
  - Similar suckering response to native aspens
  - Application primarily on well-drained, productive sites (loams)





## Hybrid aspen

- Competition control followed by establishment of 400-800 stems/acre
- Early browse protection is critical due to desirability by deer and moose
- Typical rotation length=20-25 years





## ≻<u>Hybrid aspen</u>

- If goal is for rapid establishment of high density hybrid aspen stand:
  - Establish lower density planting (50-200 TPA)
  - Shear plantation 5-7 years post planting
  - Adds 3-5 years to first rotation (sheared stems reach planted stems quickly)





- Hybrid aspen
  - 10-year-old native and hybrid stands post-shearing



-Average stand-level biomass is ~2.5 times greater in hybrid stands (volume is ~4 times greater)

## Ecological considerations with aspen

- Importance of structural retention for biodiversity objectives widely recognized (and enforced)
- Aspen silvics present challenge in relation to retention due to intolerance and auxin regulation of sprouting
  - Retention of 10-15 ft<sup>2</sup>/ac has been shown to reduce sucker height growth and densities by 40-50%



## Ecological considerations with aspen

 Application of aggregate reserve patches minimizes influence of residuals and maintains other species options on site



## **Ecological considerations with aspen**



#### Conclusions



- Aspen can be a highly productive and straightforward type for management if site quality and overstory stocking allows
- Critical component to aspen management is understanding regeneration source both in harvest timing and rotation length
  - By nature, aspen is a transitional type that allows for many mixedwood opportunities with more tolerant, long-lived species
    - Use retention and other approaches to maintain these options

