Using Soil Attributes to Inform Silvicultural Prescriptions and Carbon Storage Objectives

Laura Kenefic
U.S. Forest Service
Northern Research Station

Joshua Puhlick
University of Maine
School of Forest Resources

With thanks to Bethany Muñoz
U.S. Forest Service, Northern Research Station
Soil – Production Relationships

• Soils are important factors in timber production
 – Drainage, nutrition, structure, parent material

• Growth and quality of individual tree species
 – Softwood v. hardwood sites

• Indices
 – Briggs’ site class

Briggs 1994
Habitat Mapping

• Bill Leak, U.S. Forest Service, 1970s-1980s
 – Habitat: areas within climatic – mineralogical zones which support a distinct successional sequence (i.e., climax forest)
 – Based on drainage, mineral soil characteristics, and parent material
 – Used to determine which species to favor for most production for least effort

Go to “Treesearch” website, enter keywords “habitat mapping” and author “Leak”
Habitat Mapping

- Marinus Westveld, U.S. Forest Service
- 1920s-1930s
 - Spruce types: spruce swamp, spruce flat, spruce-hardwoods, spruce slope, and old-field spruce
- 1950s
 - Site types: climax forest type
 - Based on organic and mineral soil characteristics, topographic position, and ground vegetation
 - Used to determine composition and structure goals for silviculture

Go to “Treesearch” website, enter author “Westveld”
Key Points

• Species respond differently to soil attributes
• Soil variables (drainage, nutrition, parent material) are determinants of potential composition (climax type)
• But current tree species composition is a poor indicator of site type and growth potential
 – Example: stable versus transitional mixedwoods

Photo courtesy of Nathan Wesely
Transitional Mixedwoods

1956

2008

U.S. Forest Service
Managed Forests

• Species composition, quality, and growth are a function of site and disturbance history

To what degree are northern conifer compositional outcomes a function of site versus silviculture?

Photos courtesy of Phil Hofmeyer
Penobscot Experimental Forest

- 3,800 acres
- U.S. Forest Service
- 1950 to present
Silvicultural Treatments
1950 to present

Variants of:
- Shelterwood
- Single-tree selection
- Diameter-limit
- Commercial clearcutting
Soils

- Glacial till and lacustrine deposits
 - Range from well to moderately well drained loams and stony loams, to poorly to very poorly drained silt and silty clay loams
Effect of Silviculture

• Across all sites, commercial clearcutting resulted in lower softwood abundance than any other treatment
• For other treatments, softwood abundance is a function of silviculture and depth to water
 – On wetter sites, proportion of softwoods is similar across treatments
 – On drier sites, proportion of softwoods decreases with increasing intensity of harvest
• Exception:
 – Uniform shelterwood
Site and Silviculture

• Interactions between soils, silviculture, and species silvics
 – Forest composition and production
• Match species objectives to site potential
• Working forest
 – Current composition affected by management
 – Important to consider soils in setting goals
Site Quality & C Dynamics

Research on the PEF
PEF Natural Area
32A - Scantic

70.0 (9.5) 51.7 (19.9) 71.7 (7.5) 90.0 (9.1)
32B - Danforth

64.6 (14.2) 54.2 (10.8) 43.8 (15.8) 37.5 (14.4)
C accumulation

- Cumulative sum of net changes in aboveground live tree and dead wood C stocks over time.
- Rates of C accumulation were fairly similar for stands 32A and 32B despite differences in soil types between stands.
Species composition

- 32A – balsam fir.
- 32B – eastern hemlock.
C in the forest

About half of the C stocks are in belowground C pools.

<table>
<thead>
<tr>
<th>Aggregated C pools</th>
<th>Stand</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32A</td>
<td>32B</td>
</tr>
<tr>
<td>Aboveground (Mg ha(^{-1}))</td>
<td>100.1 (14.1)</td>
<td>146.5 (20.2)</td>
</tr>
<tr>
<td></td>
<td>87.6-122.6</td>
<td>128.7-168.7</td>
</tr>
<tr>
<td>Belowground (Mg ha(^{-1}))</td>
<td>96.3 (7.6)</td>
<td>100.4 (6.6)</td>
</tr>
<tr>
<td></td>
<td>86.8-105.7</td>
<td>96.2-110.3</td>
</tr>
<tr>
<td>Total ecosystem (Mg ha(^{-1}))</td>
<td>196.3 (9.6)</td>
<td>247.0 (17.7)</td>
</tr>
<tr>
<td></td>
<td>185.6-209.4</td>
<td>226.8-267.3</td>
</tr>
</tbody>
</table>
Site quality and C stocks

The percentage of coarse fragments in the mineral soil was negatively correlated with many C stocks and explained much of the variation in C stocks between stands within treatments.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Selection</th>
<th>Clearcut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stand</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>Coarse fragments (%)</td>
<td>28.2 (10.9)</td>
<td>42.8 (19.8)</td>
</tr>
<tr>
<td>Aboveground C (Mg ha⁻¹)</td>
<td>78.4 (11.0)</td>
<td>63.3 (11.7)</td>
</tr>
<tr>
<td>Total ecosystem C (Mg ha⁻¹)</td>
<td>188.5 (24.1)</td>
<td>153.1 (34.1)</td>
</tr>
<tr>
<td>(Mg ha⁻¹)</td>
<td>155.4-218.0</td>
<td>132.5-213.4</td>
</tr>
</tbody>
</table>
New soil research to inform silviculture

Joshua Puhlick, Marie-Cecile Gruselle, and Ivan Fernandez