Mehdi Tajvidi – Publications

Peer-reviewed papers (past 5 years):


  1. Alrubaie, M. A. A., Lopez-Anido, R. A., Gardner, D. J., Tajvidi, M., & Han, Y. 2020. Experimental investigation of the hygrothermal creep strain of wood–plastic composite lumber made from thermally modified wood. Journal of Thermoplastic Composite Materials, 33(9), 1248-1268.
  2. Amini, E., Hafez, I., Tajvidi, M., & Bousfield, D. W., 2020. Cellulose and lignocellulose nanofibril suspensions and films: A comparison. Carbohydrate Polymers, 117011.
  3. Wang, L., Gardner, D. J., Wang, J., Yang, Y., Tekinalp, H. L., Tajvidi, M., … & Ozcan, S., 2020. Towards the scale-up production of cellulose nanocomposites using melt processing: A critical review on structure-processing-property relationships. Composites Part B: Engineering, 108297.
  4. Alrubaie, M. A. A., Lopez-Anido, R. A., Gardner, D. J., Tajvidi, M., & Han, Y., 2020. Modeling the hygrothermal creep behavior of wood plastic composite (WPC) lumber made from thermally modified wood. Journal of Thermoplastic Composite Materials, 33 (8), 1109-1124.
  5. Zhao, X., Li, K., Wang, Y., Tekinalp, H., Larsen, G., Rasmussen, D., Ginder, R., Wang, L., Gardner, D.J., Tajvidi, M. and Webb, E., 2020. High-strength polylactic acid (PLA) biocomposites reinforced by epoxy-modified pine fibers. ACS Sustainable Chemistry & Engineering.
  6. Amini, E., & Tajvidi, M., Mechanical and thermal behavior of cellulose nanocrystals-incorporated Acrodur® sustainable hybrid composites for automotive applications. Journal of Composite Materials, 0021998320912474.
  7. Wang, L., Chen, C., Wang, J., Gardner, D. J., & Tajvidi, M., Cellulose nanofibrils versus cellulose nanocrystals: Comparison of performance in flexible multilayer films for packaging applications. Food Packaging and Shelf Life, 23, 100464.
  8. Hafez, I., Amini, E., & Tajvidi, M., 2020. The synergy between cellulose nanofibrils and calcium carbonate in a hybrid composite system. Cellulose, 1-15.
  9. Tayeb, A.H., Tajvidi, M., & Bousfield, D., 2020. Based Oil Barrier Packaging using Lignin-Containing Cellulose Nanofibrils. Molecules, 25(6), 1344.
  10. Hafez, I., & Tajvidi, M., Laminated Wallboard Panels Made with Cellulose Nanofibrils as a Binder: Production and Properties. Materials, 13(6), 1303.
  11. Ghasemi, S., Rahimzadeh-Bajgiran, P., Tajvidi, M., & Shaler, S. M., 2020. Birefringence-based orientation mapping of cellulose nanofibrils in thin films. Cellulose, 27(2), 677-692.


  1. Amini, E. N., Tajvidi, M., Bousfield, D. W., Gardner, D. J., & Shaler, S. M., 2019. Dewatering Behavior of a Wood-Cellulose Nanofibril Particulate System. Scientific Reports, 9(1), 1-10.
  2. Mosavi-Mirkolaei, S. T., Najafi, S. K., & Tajvidi, M., Physical and Mechanical Properties of Wood-Plastic Composites Made with Microfibrillar Blends of LDPE, HDPE and PET. Fibers and Polymers, 20(10), 2156-2165.
  3. Najafi, S. M. H., Bousfield, D. W., & Tajvidi, M., 2019. Evaluation of the adhesion performance of latex-starch mixtures to calcium carbonate surfaces. Nordic Pulp & Paper Research Journal, 34(3), 318-325.
  4. Zheng, M., Tajvidi, M., Tayeb, A. H., & Stark, N. M., 2019. Effects of bentonite on physical, mechanical and barrier properties of cellulose nanofibril hybrid films for packaging applications. Cellulose, 26(9), 5363-5379.
  5. Wang, L., Palmer, J., Tajvidi, M., Gardner, D. J., & Han, Y., 2019. Thermal properties of spray-dried cellulose nanofibril-reinforced polypropylene composites from extrusion-based additive manufacturing. Journal of Thermal Analysis and Calorimetry, 136 (3), 1069-1077.
  6. Sun, W., Tajvidi, M., Hunt, C. G., McIntyre, G., & Gardner, D. J. 2019. Fully Bio-Based Hybrid Composites Made of Wood, Fungal Mycelium and Cellulose Nanofibrils. Scientific Reports, 9(1), 3766.
  7. Najafi, S. M. H., Bousfield, D. W., & Tajvidi, M. Cracking at the fold in double layer coated paper: the influence of latex and starch composition. Tappi Journal, 18(2), 93-99.
  8. Noonan, C., Tajvidi, M., Tayeb, A. H., Shahinpoor, M., & Tabatabaie, S. E. 2019. Structure-Property Relationships in Hybrid Cellulose Nanofibrils/Nafion-Based Ionic Polymer-Metal Composites. Materials, 12(8), 1269.


  1. Tayeb, A., Amini, E., Ghasemi, S., & Tajvidi, M., Cellulose Nanomaterials—Binding Properties and Applications: A Review. Molecules, 23(10), 2684.
  2. Tayeb, A. H. & Tajvidi, M., Sustainable Barrier System via Self-assembly of Colloidal Montmorillonite and Crosslinking Resins on Nanocellulose Interfaces. ACS Applied Materials & Interfaces, 11 (1), 1604-1615.
  3. Mashkour, M., Kimura, T., Mashkour, M., Kimura, F., & Tajvidi, M., 2018. Printing Birefringent Figures by Surface Tension-Directed Self-Assembly of a Cellulose Nanocrystal/Polymer Ink Components. ACS Applied Materials & Interfaces, 11(1), 1538-1545.
  4. Ghasemi, S., Tajvidi, D. J., Gardner, D. W. Bousfield & S. M. Shaler. Effect of wettability and surface free energy of collection substrates on the structure and morphology of dry-spun cellulose nanofibril filaments. Cellulose, 25(11), 6305-6317.
  5. Najafi, S. M. H., Tajvidi, M., & Bousfield, D. W. 2018. Production and mechanical characterization of free-standing pigmented paper coating layers with latex and starch as binder. Progress in Organic Coatings, 123, 138-145.
  6. Mousavi, S. M. M., Afra, E., Tajvidi, M., Bousfield, D. W., & Dehghani-Firouzabadi, M., 2018. Application of cellulose nanofibril (CNF) as coating on paperboard at moderate solids content and high coating speed using blade coater. Progress in Organic Coatings, 122, 207-218
  7. Ghasemi, S., Tajvidi, D.W. Bousfield and D. J. Gardner, 2018. Reinforcement of natural fiber yarns by cellulose nanomaterials: A multi-scale study. Industrial Crops and Products, 111, 471-481.
  8. Wang, Lu, W.M. Gramlich, D.J. Gardner, Y. Han and Tajvidi, 2018. Spray-dried cellulose nanofibril-reinforced polypropylene composites for extrusion-based additive manufacturing: nonisothermal crystallization kinetics and thermal expansion. Journal of Composites Science, 2(1), 7.


  1. Wang, J., D. J. Gardner, N. M. Stark, D. W. Bousfield, Tajvidi, and Z. Cai, 2017. Moisture and oxygen barrier properties of cellulose nanomaterial-based films. ACS Sustainable Chemistry & Engineering, 6(1), 49-70.
  2. Fraver, S., Tajvidi, A.W. D’Amato, D. L. Lindner, J.A. Forrester and A.M. Milo, 2017. Woody material structural degradation through decomposition on the forest floor. Canadian Journal of Forest Research, 48(1), 111-115.
  3. Naghizadeh Mahani, Z. and Tajvidi, 2017. Viscoelastic mapping of spruce- polyurethane bond line area using AM-FM atomic force microscopy. International Journal of Adhesion and Adhesives, 79, 59-66.
  4. Diop, C. I. K., Tajvidi, M. A. Bilodeau, D. W. Bousfield & J. F. Hunt, 2017. Evaluation of the incorporation of lignocellulose nanofibrils as sustainable adhesive replacement in medium density fiberboards. Industrial Crops and Products: 109, 27-36.
  5. Hunt, J. F., W. Leng, and Tajvidi, 2017. Vertical density profile and internal bond strength of wet-formed particleboard bonded with cellulose nanofibrils. Wood and Fiber Science, 49(4), 1-11.
  6. Davids, W. G., N. Willey, R. Lopez-Anido, S. Shaler, D. Gardner, R. Edgar & Tajvidi, (2017). Structural performance of hybrid SPFs-LSL cross-laminated timber panels. Construction and Building Materials, 149, 156-163.
  7. Leng, W., J. F. Hunt, & Tajvidi, 2017. Screw and Nail Withdrawal Strength and Water Soak Properties of Wet-formed Cellulose Nanofibrils Bonded Particleboard. BioResources, 12(4), 7692-7710.
  8. Ghasemi, S., Tajvidi, D. W. Bousfield, D. J. Gardner & W. M. Gramlich, 2017. Dry-Spun Neat Cellulose Nanofibril Filaments: Influence of Drying Temperature and Nanofibril Structure on Filament Properties. Polymers, 9(9), 392.
  9. Diop, C. I. K., Tajvidi, M. A., Bilodeau, D. W. Bousfield, & J. F Hunt, 2017. Isolation of lignocellulose nanofibrils (LCNF) and application as adhesive replacement in wood composites: example of fiberboard. Cellulose, 24(7), 3037-3050.
  10. Amini, E., Tajvidi, D. J. Gardner & D. W. Bousfield (2017). Utilization of Cellulose Nanofibrils as a Binder for Particleboard Manufacture. BioResources, 12(2), 4093-4110.
  11. Leng, W., J. F. Hunt, & Tajvidi, 2017. Effects of Density, Cellulose Nanofibrils Addition Ratio, Pressing Method, and Particle Size on the Bending Properties of Wet-formed Particleboard. BioResources, 12(3), 4986-5000.
  12. Mousavi, S. M., E. Afra, Tajvidi, D. W. Bousfield, & M. Dehghani-Firouzabadi, 2017. Cellulose nanofiber/carboxymethyl cellulose blends as an efficient coating to improve the structure and barrier properties of paperboard. Cellulose, 24(7), 3001-3014.
  13. Horseman, T., Tajvidi, Diop, C.I.K and D.J. Gardner, 2017. Production and property assessment of neat lignocellulose nanofibrils (LCNF) and their composite films. Cellulose, 24 (6), 2455-2468.


  1. Yousefi Shivyari, N., Tajvidi, D. Gardner and D. Bousfield, 2016. Production and characterization of laminates of paper and cellulose nanofibrils. ACS Applied Materials and Interfaces, 8(38): 25520-25528.
  2. Rowe, A., Tajvidi and D.J. Gardner, 2016. Thermal stability of cellulose nanomaterials and their composites with polyvinyl alcohol (PVA). Journal of Thermal Analysis and Calorimetry. 126 (3): 1371-1386.
  3. Gardner, D. J. and Tajvidi, 2016. Hydrogen bonding in wood-based materials: an update. Wood and Fiber Science. 48 (4): 234-244.
  4. Tajvidi, M., D. J. Gardner and D. Bousfield, 2016. Cellulose Nanomaterials as Binders: Laminate and Particulate Systems. Journal of Renewable Materials. 4 (5): 365-376.
  5. Rasouli, D., N. Tzankova Dintcheva, M. Faezipour, F.P. La Mantia, M.R. Mastri Farahani and Tajvidi, 2016. Effect of nano zinc oxide as UV stabilizer on the weathering performance of wood-polyethylene composite. Polymer Degradation and Stability 133: 85-91.